LongReMix: Robust Learning with High Confidence Samples in a Noisy Label
Environment
- URL: http://arxiv.org/abs/2103.04173v1
- Date: Sat, 6 Mar 2021 18:48:40 GMT
- Title: LongReMix: Robust Learning with High Confidence Samples in a Noisy Label
Environment
- Authors: Filipe R. Cordeiro, Ragav Sachdeva, Vasileios Belagiannis, Ian Reid,
Gustavo Carneiro
- Abstract summary: We propose the new 2-stage noisy-label training algorithm LongReMix.
We test LongReMix on the noisy-label benchmarks CIFAR-10, CIFAR-100, WebVision, Clothing1M, and Food101-N.
Our approach achieves state-of-the-art performance in most datasets.
- Score: 33.376639002442914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural network models are robust to a limited amount of label noise, but
their ability to memorise noisy labels in high noise rate problems is still an
open issue. The most competitive noisy-label learning algorithms rely on a
2-stage process comprising an unsupervised learning to classify training
samples as clean or noisy, followed by a semi-supervised learning that
minimises the empirical vicinal risk (EVR) using a labelled set formed by
samples classified as clean, and an unlabelled set with samples classified as
noisy. In this paper, we hypothesise that the generalisation of such 2-stage
noisy-label learning methods depends on the precision of the unsupervised
classifier and the size of the training set to minimise the EVR. We empirically
validate these two hypotheses and propose the new 2-stage noisy-label training
algorithm LongReMix. We test LongReMix on the noisy-label benchmarks CIFAR-10,
CIFAR-100, WebVision, Clothing1M, and Food101-N. The results show that our
LongReMix generalises better than competing approaches, particularly in high
label noise problems. Furthermore, our approach achieves state-of-the-art
performance in most datasets. The code will be available upon paper acceptance.
Related papers
- Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Reliable Label Correction is a Good Booster When Learning with Extremely
Noisy Labels [65.79898033530408]
We introduce a novel framework, termed as LC-Booster, to explicitly tackle learning under extreme noise.
LC-Booster incorporates label correction into the sample selection, so that more purified samples, through the reliable label correction, can be utilized for training.
Experiments show that LC-Booster advances state-of-the-art results on several noisy-label benchmarks.
arXiv Detail & Related papers (2022-04-30T07:19:03Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - PropMix: Hard Sample Filtering and Proportional MixUp for Learning with
Noisy Labels [36.461580348771435]
The most competitive noisy label learning methods rely on an unsupervised classification of clean and noisy samples.
PropMix filters out hard noisy samples, with the goal of increasing the likelihood of correctly re-labelling the easy noisy samples.
PropMix has state-of-the-art (SOTA) results on CIFAR-10/-100(with symmetric, asymmetric and semantic label noise), Red Mini-ImageNet (from the Controlled Noisy Web Labels), Clothing1M and WebVision.
arXiv Detail & Related papers (2021-10-22T14:27:37Z) - An Ensemble Noise-Robust K-fold Cross-Validation Selection Method for
Noisy Labels [0.9699640804685629]
Large-scale datasets tend to contain mislabeled samples that can be memorized by deep neural networks (DNNs)
We present Ensemble Noise-robust K-fold Cross-Validation Selection (E-NKCVS) to effectively select clean samples from noisy data.
We evaluate our approach on various image and text classification tasks where the labels have been manually corrupted with different noise ratios.
arXiv Detail & Related papers (2021-07-06T02:14:52Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
Deep neural networks are prone to overfitting in the presence of label noise.
We propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning.
Our framework generally outperforms at medium to high noise levels.
arXiv Detail & Related papers (2021-05-27T13:49:31Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
We study a new variant of the noisy label problem that combines the open-set and closed-set noisy labels.
Our results show that our method produces superior classification results and better feature representations than previous state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.