Neighborhood Collective Estimation for Noisy Label Identification and
Correction
- URL: http://arxiv.org/abs/2208.03207v1
- Date: Fri, 5 Aug 2022 14:47:22 GMT
- Title: Neighborhood Collective Estimation for Noisy Label Identification and
Correction
- Authors: Jichang Li, Guanbin Li, Feng Liu, Yizhou Yu
- Abstract summary: Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
- Score: 92.20697827784426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning with noisy labels (LNL) aims at designing strategies to improve
model performance and generalization by mitigating the effects of model
overfitting to noisy labels. The key success of LNL lies in identifying as many
clean samples as possible from massive noisy data, while rectifying the wrongly
assigned noisy labels. Recent advances employ the predicted label distributions
of individual samples to perform noise verification and noisy label correction,
easily giving rise to confirmation bias. To mitigate this issue, we propose
Neighborhood Collective Estimation, in which the predictive reliability of a
candidate sample is re-estimated by contrasting it against its feature-space
nearest neighbors. Specifically, our method is divided into two steps: 1)
Neighborhood Collective Noise Verification to separate all training samples
into a clean or noisy subset, 2) Neighborhood Collective Label Correction to
relabel noisy samples, and then auxiliary techniques are used to assist further
model optimization. Extensive experiments on four commonly used benchmark
datasets, i.e., CIFAR-10, CIFAR-100, Clothing-1M and Webvision-1.0, demonstrate
that our proposed method considerably outperforms state-of-the-art methods.
Related papers
- Mitigating Noisy Supervision Using Synthetic Samples with Soft Labels [13.314778587751588]
Noisy labels are ubiquitous in real-world datasets, especially in the large-scale ones derived from crowdsourcing and web searching.
It is challenging to train deep neural networks with noisy datasets since the networks are prone to overfitting the noisy labels during training.
We propose a framework that trains the model with new synthetic samples to mitigate the impact of noisy labels.
arXiv Detail & Related papers (2024-06-22T04:49:39Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - PASS: Peer-Agreement based Sample Selection for training with Noisy Labels [16.283722126438125]
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects.
Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples.
We propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem.
arXiv Detail & Related papers (2023-03-20T00:35:33Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
Training deep neural network (DNN) with noisy labels is practically challenging.
Previous efforts tend to handle part or full data in a unified denoising flow.
We propose a coarse-to-fine robust learning method called CREMA to handle noisy data in a divide-and-conquer manner.
arXiv Detail & Related papers (2022-08-23T02:06:38Z) - Sample Prior Guided Robust Model Learning to Suppress Noisy Labels [8.119439844514973]
We propose PGDF, a novel framework to learn a deep model to suppress noise by generating the samples' prior knowledge.
Our framework can save more informative hard clean samples into the cleanly labeled set.
We evaluate our method using synthetic datasets based on CIFAR-10 and CIFAR-100, as well as on the real-world datasets WebVision and Clothing1M.
arXiv Detail & Related papers (2021-12-02T13:09:12Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - An Ensemble Noise-Robust K-fold Cross-Validation Selection Method for
Noisy Labels [0.9699640804685629]
Large-scale datasets tend to contain mislabeled samples that can be memorized by deep neural networks (DNNs)
We present Ensemble Noise-robust K-fold Cross-Validation Selection (E-NKCVS) to effectively select clean samples from noisy data.
We evaluate our approach on various image and text classification tasks where the labels have been manually corrupted with different noise ratios.
arXiv Detail & Related papers (2021-07-06T02:14:52Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
Deep neural networks are prone to overfitting in the presence of label noise.
We propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning.
Our framework generally outperforms at medium to high noise levels.
arXiv Detail & Related papers (2021-05-27T13:49:31Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.