The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets
- URL: http://arxiv.org/abs/2103.04327v1
- Date: Sun, 7 Mar 2021 11:28:54 GMT
- Title: The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets
- Authors: Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw
- Abstract summary: We investigate the impact of eleven offline and five online learning algorithms to predict the electricity demand profile over the next 24h.
We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best offline algorithm.
We also show that large errors in prediction accuracy have a disproportionate error on investments made over a 17-year time frame.
- Score: 69.68068088508505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electricity supply must be matched with demand at all times. This helps
reduce the chances of issues such as load frequency control and the chances of
electricity blackouts. To gain a better understanding of the load that is
likely to be required over the next 24h, estimations under uncertainty are
needed. This is especially difficult in a decentralized electricity market with
many micro-producers which are not under central control.
In this paper, we investigate the impact of eleven offline learning and five
online learning algorithms to predict the electricity demand profile over the
next 24h. We achieve this through integration within the long-term agent-based
model, ElecSim. Through the prediction of electricity demand profile over the
next 24h, we can simulate the predictions made for a day-ahead market. Once we
have made these predictions, we sample from the residual distributions and
perturb the electricity market demand using the simulation, ElecSim. This
enables us to understand the impact of errors on the long-term dynamics of a
decentralized electricity market.
We show we can reduce the mean absolute error by 30% using an online
algorithm when compared to the best offline algorithm, whilst reducing the
required tendered national grid reserve required. This reduction in national
grid reserves leads to savings in costs and emissions. We also show that large
errors in prediction accuracy have a disproportionate error on investments made
over a 17-year time frame, as well as electricity mix.
Related papers
- Short-Term Electricity Demand Forecasting of Dhaka City Using CNN with Stacked BiLSTM [0.471858286267785]
This paper proposes a hybrid model of Convolutional Neural Network (CNN) and stacked Bidirectional Long-short Term Memory (BiLSTM) architecture to perform an accurate short-term forecast of the electricity demand of Dhaka city.
The proposed approach produced the best prediction results in comparison to the other benchmark models used in the study, with MAPE 1.64%, MSE 0.015, RMSE 0.122 and MAE 0.092.
arXiv Detail & Related papers (2024-06-10T09:02:07Z) - Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand [8.068451210598678]
Power systems operate under uncertainty originating from multiple factors that are impossible to account for deterministically.
Recent progress in deep learning has helped to significantly improve the accuracy of point forecasts.
We propose a novel general approach for distributional forecasting capable of predicting arbitrary quantiles.
arXiv Detail & Related papers (2024-04-26T14:43:19Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
We propose to embed electricity market-clearing optimization as a deep learning layer.
Differentiating through this layer allows for balancing between prediction and pricing errors.
We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing.
arXiv Detail & Related papers (2023-08-02T21:16:05Z) - Electricity Price Forecasting Model based on Gated Recurrent Units [0.0]
This paper presents a model for electricity price forecasting based on Gated Recurrent Units.
Noise in electricity price seriously reduces the efficiency and effectiveness of analysis.
The proposed methodology can perform effectively in prediction of electricity price.
arXiv Detail & Related papers (2022-07-28T16:49:03Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
Agent-based simulations are used to better understand the dynamics of the electricity market.
Agent-based models provide the opportunity to integrate machine learning and artificial intelligence.
We review 55 papers published between 2016 and 2021 which focus on machine learning applied to agent-based electricity market models.
arXiv Detail & Related papers (2022-06-05T14:52:26Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator.
We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and LSTM encoder-decoders.
arXiv Detail & Related papers (2022-05-20T22:13:25Z) - N-BEATS neural network for mid-term electricity load forecasting [8.430502131775722]
We show that our proposed deep neural network modeling approach is effective at solving the mid-term electricity load forecasting problem.
It is simple to implement and train, it does not require signal preprocessing, and it is equipped with a forecast bias reduction mechanism.
The empirical study shows that proposed neural network clearly outperforms all competitors in terms of both accuracy and forecast bias.
arXiv Detail & Related papers (2020-09-24T21:48:08Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
We consider the problem of demand-side energy management, where each household is equipped with a smart meter that is able to schedule home appliances online.
The goal is to minimize the overall cost under a real-time pricing scheme.
We propose the formulation of a smart grid environment as a Markov game.
arXiv Detail & Related papers (2020-05-05T07:32:40Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.