Machine learning applications for electricity market agent-based models:
A systematic literature review
- URL: http://arxiv.org/abs/2206.02196v1
- Date: Sun, 5 Jun 2022 14:52:26 GMT
- Title: Machine learning applications for electricity market agent-based models:
A systematic literature review
- Authors: Alexander J. M. Kell, Stephen McGough, Matthew Forshaw
- Abstract summary: Agent-based simulations are used to better understand the dynamics of the electricity market.
Agent-based models provide the opportunity to integrate machine learning and artificial intelligence.
We review 55 papers published between 2016 and 2021 which focus on machine learning applied to agent-based electricity market models.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electricity market has a vital role to play in the decarbonisation of the
energy system. However, the electricity market is made up of many different
variables and data inputs. These variables and data inputs behave in sometimes
unpredictable ways which can not be predicted a-priori. It has therefore been
suggested that agent-based simulations are used to better understand the
dynamics of the electricity market. Agent-based models provide the opportunity
to integrate machine learning and artificial intelligence to add intelligence,
make better forecasts and control the power market in better and more efficient
ways. In this systematic literature review, we review 55 papers published
between 2016 and 2021 which focus on machine learning applied to agent-based
electricity market models. We find that research clusters around popular
topics, such as bidding strategies. However, there exists a long-tail of
different research applications that could benefit from the high intensity
research from the more investigated applications.
Related papers
- Electricity Price Forecasting in the Irish Balancing Market [0.0]
This work applies to the Irish balancing market a variety of price prediction techniques proven successful in the widely studied day-ahead market.
We compare statistical, machine learning, and deep learning models using a framework that investigates the impact of different training sizes.
An extensive numerical study shows that well-performing models in the day-ahead market do not perform well in the balancing one.
arXiv Detail & Related papers (2024-02-09T15:18:00Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
generative, multi-purpose AI systems promise a unified approach to building machine learning (ML) models into technology.
This ambition of generality'' comes at a steep cost to the environment, given the amount of energy these systems require and the amount of carbon that they emit.
We measure deployment cost as the amount of energy and carbon required to perform 1,000 inferences on representative benchmark dataset using these models.
We conclude with a discussion around the current trend of deploying multi-purpose generative ML systems, and caution that their utility should be more intentionally weighed against increased costs in terms of energy and emissions
arXiv Detail & Related papers (2023-11-28T15:09:36Z) - A Machine Learning Framework to Deconstruct the Primary Drivers for
Electricity Market Price Events [0.8192907805418581]
Power grids are moving towards 100% renewable energy source bulk power grids.
Traditional root cause analysis and statistical approaches are rendered inapplicable to analyze and infer the main drivers behind price formation.
We propose a machine learning-based analysis framework to deconstruct the primary drivers for price spike events in modern electricity markets with high renewable energy.
arXiv Detail & Related papers (2023-09-12T09:24:21Z) - A Glimpse in ChatGPT Capabilities and its impact for AI research [4.2245880148320705]
Large language models (LLMs) have recently become a popular topic in the field of Artificial Intelligence (AI) research.
These models are trained on massive amounts of data and can be used for a wide range of tasks, including language translation, text generation, and question answering.
arXiv Detail & Related papers (2023-05-10T12:10:51Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
We supply, to the best of our knowledge, the first open source simulation platform, Open SOUrce Market Simulator (OSOUM) to analyze trading markets and specifically data markets.
We describe and implement a specific data market model, consisting of two types of agents: sellers who own various datasets available for acquisition, and buyers searching for relevant and beneficial datasets for purchase.
Although commercial frameworks, intended for handling data markets, already exist, we provide a free and extensive end-to-end research tool for simulating possible behavior for both buyers and sellers participating in (data) markets.
arXiv Detail & Related papers (2021-02-18T09:20:26Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z) - Smart Grid: A Survey of Architectural Elements, Machine Learning and
Deep Learning Applications and Future Directions [0.0]
Big data analytics, machine learning (ML), and deep learning (DL) plays a key role when it comes to the analysis of this massive amount of data and generation of valuable insights.
This paper explores and surveys the Smart grid architectural elements, machine learning, and deep learning-based applications and approaches in the context of the Smart grid.
arXiv Detail & Related papers (2020-10-16T01:40:24Z) - Transfer Learning for Electricity Price Forecasting [0.0]
We propose to use transfer learning as a tool for utilizing information from other electricity price markets for forecasting.
Our experiments on five different day-ahead markets indicate that transfer learning improves the performance of electricity price forecasting in a statistically significant manner.
arXiv Detail & Related papers (2020-07-05T17:24:36Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
This work focuses on the electric power market, comparing the status quo with the recent trend towards the increase in distributed self-generation capabilities by prosumers.
We introduce a potential multi-layered architecture for a Peer-to-Peer (P2P) energy market, discussing the fundamental aspects of local production and local consumption as part of a microgrid.
To give a full picture to the reader, we also scrutinise relevant elements of energy trading, such as Smart Contract and grid stability.
arXiv Detail & Related papers (2020-03-02T20:32:10Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.