From non-equilibrium Green's functions to quantum master equations for
the density matrix and out-of-time-order correlators: steady state and
adiabatic dynamics
- URL: http://arxiv.org/abs/2103.04373v1
- Date: Sun, 7 Mar 2021 15:15:22 GMT
- Title: From non-equilibrium Green's functions to quantum master equations for
the density matrix and out-of-time-order correlators: steady state and
adiabatic dynamics
- Authors: Bibek Bhandari, Rosario Fazio, Fabio Taddei and Liliana Arrachea
- Abstract summary: We consider a finite quantum system under slow driving and weakly coupled to thermal reservoirs at different temperatures.
We formulate the equations ruling the dynamics of these quantities by recourse to the Schwinger-Keldysh non-equilibrium Green's function formalism.
We illustrate the formalism in the case of a qutrit coupled to bosonic reservoirs and of a pair of interacting quantum dots attached to fermionic reservoirs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider a finite quantum system under slow driving and weakly coupled to
thermal reservoirs at different temperatures. We present a systematic
derivation of the quantum master equation for the density matrix and the
out-of-time-order correlators. We start from the microscopic Hamiltonian and we
formulate the equations ruling the dynamics of these quantities by recourse to
the Schwinger-Keldysh non-equilibrium Green's function formalism, performing a
perturbative expansion in the coupling between the system and the reservoirs.
We focus on the adiabatic dynamics, which corresponds to considering the linear
response in the ratio between the relaxation time due to the system-reservoir
coupling and the time scale associated to the driving. We calculate the
particle and energy fluxes. We illustrate the formalism in the case of a qutrit
coupled to bosonic reservoirs and of a pair of interacting quantum dots
attached to fermionic reservoirs, also discussing the relevance of coherent
effects.
Related papers
- Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Observation of Nonlinear Response and Onsager Regression in a Photon Bose-Einstein Condensate [34.82692226532414]
The quantum regression theorem states that the correlations of a system at two different times are governed by the same equations of motion as the temporal response of the average values.
Here we experimentally demonstrate that the two-time particle number correlations in a photon Bose-Einstein condensate inside a dye-filled microcavity exhibit the same dynamics as the response of the condensate to a sudden perturbation of the dye molecule bath.
This confirms the regression theorem for a quantum gas and, moreover, establishes a test of this relation in an unconventional form where the perturbation acts on the bath and only the condensate response is monitored.
arXiv Detail & Related papers (2024-03-07T17:59:58Z) - Dynamical signatures of non-Markovianity in a dissipative-driven qubit [0.0]
We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a bosonic environment.
Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation.
arXiv Detail & Related papers (2024-01-17T15:58:50Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Hyper-acceleration of quantum thermalization dynamics by bypassing
long-lived coherences: An analytical treatment [0.0]
We develop a perturbative technique for solving Markovian quantum dissipative dynamics.
We show how to bypass a long-lived coherent dynamics and accelerate the relaxation to thermal equilibration in a hyper-exponential manner.
arXiv Detail & Related papers (2023-01-15T16:34:02Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Counterdiabatic driving for periodically driven open quantum systems [0.0]
We discuss dynamics of periodically-driven open quantum systems.
We find that the correlation between the population part and the coherence part of the density operator is induced by an adiabatic gauge potential.
arXiv Detail & Related papers (2022-03-17T16:01:22Z) - Hydrodynamics of quantum entropies in Ising chains with linear
dissipation [0.0]
We study the dynamics of quantum information and of quantum correlations after a quantum quench, in transverse field Ising chains subject to generic linear dissipation.
As we show, in the hydrodynamic limit of long times, large system sizes, and weak dissipation, entropy-related quantities admit a simple description within the so-called quasiparticle picture.
arXiv Detail & Related papers (2021-09-04T10:20:14Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum critical systems with dissipative boundaries [0.0]
We study the effects of dissipative boundaries in many-body systems at continuous quantum transitions.
As paradigmatic models, we consider fermionic wires subject to dissipative interactions at the boundaries.
arXiv Detail & Related papers (2021-06-04T15:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.