Attractive-repulsive interaction in coupled quantum oscillators
- URL: http://arxiv.org/abs/2408.12972v1
- Date: Fri, 23 Aug 2024 10:45:19 GMT
- Title: Attractive-repulsive interaction in coupled quantum oscillators
- Authors: Bulti Paul, Biswabibek Bandyopadhyay, Tanmoy Banerjee,
- Abstract summary: We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
- Score: 14.37149160708975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the emergent dynamics of quantum self-sustained oscillators induced by the simultaneous presence of attraction and repulsion in the coupling path. We consider quantum Stuart-Landau oscillators under attractive-repulsive coupling and construct the corresponding quantum master equation in the Lindblad form. We discover an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state; This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state. The result is supported by the analysis on the noisy classical model of the quantum system in the weak quantum regime. Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain. This study will enrich our understanding of the collective behaviors shown by coupled oscillators in the quantum domain.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Kerr nonlinearity hinders symmetry-breaking states of coupled quantum
oscillators [13.939388417767136]
We study two types of symmetry-breaking processes, namely the inhomogeneous steady state (or quantum oscillation death state) and quantum chimera state.
Remarkably, it is found that Kerr nonlinearity hinders the process of symmetry-breaking in both the cases.
arXiv Detail & Related papers (2022-05-29T18:02:15Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Quantum fluctuations and correlations in open quantum Dicke models [0.0]
In the vicinity of ground-state phase transitions quantum correlations can display non-analytic behavior and critical scaling.
Here we consider as a paradigmatic setting the superradiant phase transition of the open quantum Dicke model.
We show that local dissipation, which cannot be treated within the commonly employed Holstein-Primakoff approximation, rather unexpectedly leads to an enhancement of collective quantum correlations.
arXiv Detail & Related papers (2021-10-25T18:15:05Z) - Quantum Turing bifurcation: Transition from quantum amplitude death to
quantum oscillation death [11.353329565587574]
We show that a homogeneous steady state is transformed into an inhomogeneous steady state through the Turing bifurcation.
Our study explores the paradigmatic Turing bifurcation at the quantum-classical interface and opens up the door towards its broader understanding.
arXiv Detail & Related papers (2021-06-15T05:02:54Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum asymptotic phase reveals signatures of quantum synchronization [0.0]
We propose a fully quantum-mechanical definition of the phase, which is a key quantity in the synchronization analysis of classical nonlinear oscillators.
We show that phase locking of the system with a harmonic drive at several different frequencies can be interpreted as synchronization on a torus rather than a simple limit cycle.
arXiv Detail & Related papers (2020-06-01T07:26:41Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.