Improving Global Adversarial Robustness Generalization With
Adversarially Trained GAN
- URL: http://arxiv.org/abs/2103.04513v1
- Date: Mon, 8 Mar 2021 02:18:24 GMT
- Title: Improving Global Adversarial Robustness Generalization With
Adversarially Trained GAN
- Authors: Desheng Wang (1), Weidong Jin (1), Yunpu Wu (1), Aamir Khan (1) ((1)
School of Electrical Engineering, Southwest Jiaotong University, Chengdu, P.
R. China)
- Abstract summary: Convolutional neural networks (CNNs) have achieved beyond human-level accuracy in the image classification task.
CNNs show vulnerability to adversarial perturbations that are well-designed noises aiming to mislead the classification models.
adversarially trained GAN (ATGAN) is proposed to improve the adversarial robustness generalization of the state-of-the-art CNNs trained by adversarial training.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have achieved beyond human-level
accuracy in the image classification task and are widely deployed in real-world
environments. However, CNNs show vulnerability to adversarial perturbations
that are well-designed noises aiming to mislead the classification models. In
order to defend against the adversarial perturbations, adversarially trained
GAN (ATGAN) is proposed to improve the adversarial robustness generalization of
the state-of-the-art CNNs trained by adversarial training. ATGAN incorporates
adversarial training into standard GAN training procedure to remove obfuscated
gradients which can lead to a false sense in defending against the adversarial
perturbations and are commonly observed in existing GANs-based adversarial
defense methods. Moreover, ATGAN adopts the image-to-image generator as data
augmentation to increase the sample complexity needed for adversarial
robustness generalization in adversarial training. Experimental results in
MNIST SVHN and CIFAR-10 datasets show that the proposed method doesn't rely on
obfuscated gradients and achieves better global adversarial robustness
generalization performance than the adversarially trained state-of-the-art
CNNs.
Related papers
- Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
Adversarial training (AT) is often adopted to improve the robustness of deep neural networks (DNNs)
In this work, we propose an approach based on Jacobian norm and Selective Input Gradient Regularization (J- SIGR)
Experiments demonstrate that the proposed J- SIGR confers improved robustness against transferred adversarial attacks, and we also show that the predictions from the neural network are easy to interpret.
arXiv Detail & Related papers (2022-07-09T01:06:41Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
We propose a novel generative adversarial network (GAN)-based countermeasure approach.
GAN-based aims to eliminate the adversarial attack examples before feeding to the DNN-based classifier.
Simulation results show the effectiveness of our proposed defense GAN so that it could enhance the accuracy of the DNN-based AMC under adversarial attacks to 81%, approximately.
arXiv Detail & Related papers (2022-05-29T22:30:32Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
We introduce a novel neural network training framework that increases model's adversarial robustness to adversarial attacks.
We propose to improve model robustness to adversarial attacks by learning feature representations consistent under both data augmentations and adversarial perturbations.
We validate our method on the CIFAR-10 dataset on which it outperforms both robust accuracy and clean accuracy over alternative supervised and self-supervised adversarial learning methods.
arXiv Detail & Related papers (2022-03-16T21:41:27Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
Adversarial training has been widely demonstrated to improve model's robustness against adversarial attacks.
It remains unclear how the adversarial training could improve the generalization abilities of GNNs in the graph analytics problem.
We construct the co-adversarial perturbation (CAP) optimization problem in terms of weights and features, and design the alternating adversarial perturbation algorithm to flatten the weight and feature loss landscapes alternately.
arXiv Detail & Related papers (2021-10-28T02:28:13Z) - Robustness-via-Synthesis: Robust Training with Generative Adversarial
Perturbations [10.140147080535224]
Adversarial training with first-order attacks has been one of the most effective defenses against adversarial perturbations to this day.
This study presents a robust training algorithm where the adversarial perturbations are automatically synthesized from a random vector using a generator network.
Experimental results show that the proposed approach attains comparable robustness with various gradient-based and generative robust training techniques.
arXiv Detail & Related papers (2021-08-22T13:15:24Z) - Universal Adversarial Training with Class-Wise Perturbations [78.05383266222285]
adversarial training is the most widely used method for defending against adversarial attacks.
In this work, we find that a UAP does not attack all classes equally.
We improve the SOTA UAT by proposing to utilize class-wise UAPs during adversarial training.
arXiv Detail & Related papers (2021-04-07T09:05:49Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
In particular, our layer generates an input perturbation in the opposite direction of the adversarial one.
We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models.
Our anti-adversary layer significantly enhances model robustness while coming at no cost on clean accuracy.
arXiv Detail & Related papers (2021-03-26T09:36:59Z) - Semantics-Preserving Adversarial Training [12.242659601882147]
Adversarial training is a technique that improves adversarial robustness of a deep neural network (DNN) by including adversarial examples in the training data.
We propose semantics-preserving adversarial training (SPAT) which encourages perturbation on the pixels that are shared among all classes.
Experiment results show that SPAT improves adversarial robustness and achieves state-of-the-art results in CIFAR-10 and CIFAR-100.
arXiv Detail & Related papers (2020-09-23T07:42:14Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
Adrial training is the main method for improving adversarial robustness and the first line of defense against adversarial attacks.
This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class.
Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data.
arXiv Detail & Related papers (2020-08-18T10:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.