Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training
- URL: http://arxiv.org/abs/2203.08959v1
- Date: Wed, 16 Mar 2022 21:41:27 GMT
- Title: Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training
- Authors: Adir Rahamim, Itay Naeh
- Abstract summary: We introduce a novel neural network training framework that increases model's adversarial robustness to adversarial attacks.
We propose to improve model robustness to adversarial attacks by learning feature representations consistent under both data augmentations and adversarial perturbations.
We validate our method on the CIFAR-10 dataset on which it outperforms both robust accuracy and clean accuracy over alternative supervised and self-supervised adversarial learning methods.
- Score: 2.538209532048867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a novel neural network training framework that
increases model's adversarial robustness to adversarial attacks while
maintaining high clean accuracy by combining contrastive learning (CL) with
adversarial training (AT). We propose to improve model robustness to
adversarial attacks by learning feature representations that are consistent
under both data augmentations and adversarial perturbations. We leverage
contrastive learning to improve adversarial robustness by considering an
adversarial example as another positive example, and aim to maximize the
similarity between random augmentations of data samples and their adversarial
example, while constantly updating the classification head in order to avoid a
cognitive dissociation between the classification head and the embedding space.
This dissociation is caused by the fact that CL updates the network up to the
embedding space, while freezing the classification head which is used to
generate new positive adversarial examples. We validate our method, Contrastive
Learning with Adversarial Features(CLAF), on the CIFAR-10 dataset on which it
outperforms both robust accuracy and clean accuracy over alternative supervised
and self-supervised adversarial learning methods.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - PointACL:Adversarial Contrastive Learning for Robust Point Clouds
Representation under Adversarial Attack [73.3371797787823]
Adversarial contrastive learning (ACL) is considered an effective way to improve the robustness of pre-trained models.
We present our robust aware loss function to train self-supervised contrastive learning framework adversarially.
We validate our method, PointACL on downstream tasks, including 3D classification and 3D segmentation with multiple datasets.
arXiv Detail & Related papers (2022-09-14T22:58:31Z) - Adversarial Contrastive Learning via Asymmetric InfoNCE [64.42740292752069]
We propose to treat adversarial samples unequally when contrasted with an asymmetric InfoNCE objective.
In the asymmetric fashion, the adverse impacts of conflicting objectives between CL and adversarial learning can be effectively mitigated.
Experiments show that our approach consistently outperforms existing Adversarial CL methods.
arXiv Detail & Related papers (2022-07-18T04:14:36Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - Semantics-Preserving Adversarial Training [12.242659601882147]
Adversarial training is a technique that improves adversarial robustness of a deep neural network (DNN) by including adversarial examples in the training data.
We propose semantics-preserving adversarial training (SPAT) which encourages perturbation on the pixels that are shared among all classes.
Experiment results show that SPAT improves adversarial robustness and achieves state-of-the-art results in CIFAR-10 and CIFAR-100.
arXiv Detail & Related papers (2020-09-23T07:42:14Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
Adrial training is the main method for improving adversarial robustness and the first line of defense against adversarial attacks.
This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class.
Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data.
arXiv Detail & Related papers (2020-08-18T10:23:57Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.