論文の概要: "Sharks are not the threat humans are": Argument Component Segmentation
in School Student Essays
- arxiv url: http://arxiv.org/abs/2103.04518v1
- Date: Mon, 8 Mar 2021 02:40:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-10 05:08:14.554706
- Title: "Sharks are not the threat humans are": Argument Component Segmentation
in School Student Essays
- Title(参考訳): 「シャークは人間の脅威ではない」--学校学生評価における論議構成区分
- Authors: Tariq Alhindi and Debanjan Ghosh
- Abstract要約: 中学生が執筆した議論的エッセイのコーパスから,クレームと前提トークンを識別するためにトークンレベルの分類を適用する。
BERTに基づくマルチタスク学習アーキテクチャ(トークンと文レベルの分類)が、関連する未ラベルデータセット上で適応的に事前訓練され、最良の結果が得られることを示す。
- 参考スコア(独自算出の注目度): 3.632177840361928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Argument mining is often addressed by a pipeline method where segmentation of
text into argumentative units is conducted first and proceeded by an argument
component identification task. In this research, we apply a token-level
classification to identify claim and premise tokens from a new corpus of
argumentative essays written by middle school students. To this end, we compare
a variety of state-of-the-art models such as discrete features and deep
learning architectures (e.g., BiLSTM networks and BERT-based architectures) to
identify the argument components. We demonstrate that a BERT-based multi-task
learning architecture (i.e., token and sentence level classification)
adaptively pretrained on a relevant unlabeled dataset obtains the best results
- Abstract(参考訳): 引数マイニングは、まずテキストを引数単位に分割し、引数成分識別タスクによって進行するパイプライン方式によって対処されることが多い。
本研究では,中学生が執筆した議論的エッセイの新しいコーパスから,クレームと前提トークンを識別するためにトークンレベルの分類を適用する。
そのために、離散的機能やディープラーニングアーキテクチャ(BiLSTMネットワークやBERTベースのアーキテクチャなど)など、さまざまな最先端のモデルを比較し、引数コンポーネントを特定します。
BERTに基づくマルチタスク学習アーキテクチャ(トークンと文レベルの分類)が、関連する未ラベルデータセット上で適応的に事前訓練され、最良の結果が得られることを示す。
関連論文リスト
- DMON: A Simple yet Effective Approach for Argument Structure Learning [33.96187185638286]
引数構造学習(Argument Structure Learning, ASL)は、引数間の関係を予測する。
広範に活用されているにもかかわらず、ASLは文間の複雑な関係を潜在的に構造化されていない言説で検証するので、難しい課題である。
ASLタスクのためのDual-tower Multi-scale cOnvolution Neural Network(DMON)と呼ばれるシンプルで効果的なアプローチを開発した。
論文 参考訳(メタデータ) (2024-05-02T11:56:16Z) - Uncovering Prototypical Knowledge for Weakly Open-Vocabulary Semantic
Segmentation [59.37587762543934]
本稿では,弱開語彙セマンティックセマンティックセグメンテーション(WOVSS)の問題点について検討する。
既存の方法は、グループトークンの使用に関する粒度の矛盾に悩まされる。
マルチモーダル正規化を組み込んだプロトタイプ誘導ネットワーク(PGSeg)を提案する。
論文 参考訳(メタデータ) (2023-10-29T13:18:00Z) - Multiview Identifiers Enhanced Generative Retrieval [78.38443356800848]
生成検索は、検索対象の通路の識別子文字列を生成する。
本稿では,パスの内容に基づいて生成される新しいタイプの識別子,合成識別子を提案する。
提案手法は生成的検索において最善を尽くし,その有効性とロバスト性を実証する。
論文 参考訳(メタデータ) (2023-05-26T06:50:21Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
本稿では,文脈認識型分類器の学習を通じて文脈ヒントを利用する。
本手法はモデルに依存しないため,ジェネリックセグメンテーションモデルにも容易に適用できる。
無視できる追加パラメータと+2%の推論時間だけで、小型モデルと大型モデルの両方で十分な性能向上が達成されている。
論文 参考訳(メタデータ) (2023-03-21T07:00:35Z) - MURMUR: Modular Multi-Step Reasoning for Semi-Structured Data-to-Text
Generation [102.20036684996248]
多段階推論を用いた半構造化データからテキストを生成するための,ニューロシンボリックなモジュラーアプローチであるMURMURを提案する。
WebNLG や LogicNLG のような2つのデータ・テキスト生成タスクについて実験を行った。
論文 参考訳(メタデータ) (2022-12-16T17:36:23Z) - Multi-granularity Argument Mining in Legal Texts [0.913755431537592]
我々はトークンレベル(すなわち単語レベル)の分類問題として引数マイニングを概念化する。
その結果、トークンレベルのテキスト分類は、文章レベルのテキスト分類よりもより正確に、特定の法的議論要素を識別することを示した。
論文 参考訳(メタデータ) (2022-10-17T23:28:22Z) - Perturbations and Subpopulations for Testing Robustness in Token-Based
Argument Unit Recognition [6.502694770864571]
Argument Unit Recognition and Classification は、テキストから引数単位を識別し、それをpro または against として分類することを目的としている。
このタスクのためにシステムを開発する際に必要となる設計上の選択の1つは、分類単位が何かである。
従来の研究では、トークンレベルの微調整言語モデルは、文章を直接訓練するよりも、文章を分類する上でより堅牢な結果をもたらすことが示唆されている。
当初この主張を導いた研究を再現し、トークンベースのシステムが文ベースのシステムと比較して何を学んだかをさらに調査する。
論文 参考訳(メタデータ) (2022-09-29T13:44:28Z) - RuArg-2022: Argument Mining Evaluation [69.87149207721035]
本稿は、ロシア語テキストを扱う議論分析システムの最初のコンペティションの主催者の報告である。
新型コロナウイルスの感染拡大に伴う3つの話題について、9,550文(ソーシャルメディア投稿記事)のコーパスを用意した。
両タスクで第一位を獲得したシステムは、BERTアーキテクチャのNLI(Natural Language Inference)変種を使用した。
論文 参考訳(メタデータ) (2022-06-18T17:13:37Z) - Diversity Over Size: On the Effect of Sample and Topic Sizes for Topic-Dependent Argument Mining Datasets [49.65208986436848]
本研究では,アーギュメント・マイニング・データセットの構成が,少数・ゼロショット設定における影響について検討する。
実験結果から, モデル性能の達成には微調整が必須であるが, 慎重に構成したトレーニングサンプルを用いることで, トレーニングサンプルサイズを最大90%まで下げることで, 最大性能の95%を達成できることがわかった。
論文 参考訳(メタデータ) (2022-05-23T17:14:32Z) - Aspect-Based Argument Mining [2.3148470932285665]
Aspect-Based Argument Mining (ABAM) の課題として,Aspect Term extract (ATE) と Nested Term extract (NS) の基本的なサブタスクについて述べる。
私たちはアスペクトをメインポイント(s)引数ユニットが対処していると見なしています。
この情報は、議論のランク付け、議論の要約、生成などの下流タスクや、アスペクトレベルの逆問題探索に重要である。
論文 参考訳(メタデータ) (2020-11-01T21:57:51Z) - Same Side Stance Classification Task: Facilitating Argument Stance
Classification by Fine-tuning a BERT Model [8.8896707993459]
同じサイドスタンス分類タスクは、両方の引数が同じスタンスを共有するかどうかによって分類された引数ペアのデータセットを提供する。
3つのエポックに対して事前学習したBERTモデルを微調整し、各引数の最初の512トークンを使用して、2つの引数が同じスタンスを持つかどうかを予測する。
論文 参考訳(メタデータ) (2020-04-23T13:54:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。