Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions
- URL: http://arxiv.org/abs/2103.04786v1
- Date: Mon, 8 Mar 2021 14:29:07 GMT
- Title: Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions
- Authors: Maximilian Ilse, Patrick Forr\'e, Max Welling, Joris M. Mooij
- Abstract summary: Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
- Score: 68.6505592770171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unobserved confounding is one of the main challenges when estimating causal
effects. We propose a novel causal reduction method that replaces an arbitrary
number of possibly high-dimensional latent confounders with a single latent
confounder that lives in the same space as the treatment variable without
changing the observational and interventional distributions entailed by the
causal model. After the reduction, we parameterize the reduced causal model
using a flexible class of transformations, so-called normalizing flows. We
propose a learning algorithm to estimate the parameterized reduced model
jointly from observational and interventional data. This allows us to estimate
the causal effect in a principled way from combined data. We perform a series
of experiments on data simulated using nonlinear causal mechanisms and find
that we can often substantially reduce the number of interventional samples
when adding observational training samples without sacrificing accuracy. Thus,
adding observational data may help to more accurately estimate causal effects
even in the presence of unobserved confounders.
Related papers
- Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
We consider the problem of the Bayesian estimation of the effects of hypothetical interventions in the Gaussian Process Network model.
We detail how to perform causal inference on GPNs by simulating the effect of an intervention across the whole network and propagating the effect of the intervention on downstream variables.
We extend both frameworks beyond the case of a known causal graph, incorporating uncertainty about the causal structure via Markov chain Monte Carlo methods.
arXiv Detail & Related papers (2024-02-01T14:39:59Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Valid causal inference with unobserved confounding in high-dimensional
settings [0.0]
We show how valid semiparametric inference can be obtained in the presence of unobserved confounders and high-dimensional nuisance models.
We propose uncertainty intervals which allow for unobserved confounding, and show that the resulting inference is valid when the amount of unobserved confounding is small.
arXiv Detail & Related papers (2024-01-12T13:21:20Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Efficient estimation of weighted cumulative treatment effects by
double/debiased machine learning [3.086361225427304]
We propose a class of one-step cross-fitted double/debiased machine learning estimators for the weighted cumulative causal effect.
We apply the proposed methods to real-world observational data from a UK primary care database to compare the effects of anti-diabetic drugs on cancer outcomes.
arXiv Detail & Related papers (2023-05-03T18:19:18Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - What can the millions of random treatments in nonexperimental data
reveal about causes? [0.0]
The article introduces one such model and a Bayesian approach to combine the $O(n2)$ pairwise observations typically available in nonexperimnetal data.
We demonstrate that the proposed approach recovers causal effects in common NSW samples, as well as in arbitrary subpopulations and an order-of-magnitude larger supersample.
arXiv Detail & Related papers (2021-05-03T20:13:34Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
We bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data.
We show that systematically induced correlations in the dataset are being learned and reflected in the latent representations.
We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.
arXiv Detail & Related papers (2020-06-14T12:47:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.