Active Bayesian Causal Inference
- URL: http://arxiv.org/abs/2206.02063v1
- Date: Sat, 4 Jun 2022 22:38:57 GMT
- Title: Active Bayesian Causal Inference
- Authors: Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz
Pernkopf, Robert Peharz, Julius von K\"ugelgen
- Abstract summary: We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
- Score: 72.70593653185078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery and causal reasoning are classically treated as separate and
consecutive tasks: one first infers the causal graph, and then uses it to
estimate causal effects of interventions. However, such a two-stage approach is
uneconomical, especially in terms of actively collected interventional data,
since the causal query of interest may not require a fully-specified causal
model. From a Bayesian perspective, it is also unnatural, since a causal query
(e.g., the causal graph or some causal effect) can be viewed as a latent
quantity subject to posterior inference -- other unobserved quantities that are
not of direct interest (e.g., the full causal model) ought to be marginalized
out in this process and contribute to our epistemic uncertainty. In this work,
we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active
learning framework for integrated causal discovery and reasoning, which jointly
infers a posterior over causal models and queries of interest. In our approach
to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise
models, which we model using Gaussian processes. We sequentially design
experiments that are maximally informative about our target causal query,
collect the corresponding interventional data, and update our beliefs to choose
the next experiment. Through simulations, we demonstrate that our approach is
more data-efficient than several baselines that only focus on learning the full
causal graph. This allows us to accurately learn downstream causal queries from
fewer samples while providing well-calibrated uncertainty estimates for the
quantities of interest.
Related papers
- CELLO: Causal Evaluation of Large Vision-Language Models [9.928321287432365]
Causal reasoning is fundamental to human intelligence and crucial for effective decision-making in real-world environments.
We introduce a fine-grained and unified definition of causality involving interactions between humans and objects.
We construct a novel dataset, CELLO, consisting of 14,094 causal questions across all four levels of causality.
arXiv Detail & Related papers (2024-06-27T12:34:52Z) - Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders [16.682775063684907]
We decompose the structure learning problem into inferring causal order and a parent set for each variable given a causal order.
Our method yields state-of-the-art in structure learning on simulated non-linear additive noise benchmarks with scale-free and Erdos-Renyi graph structures.
arXiv Detail & Related papers (2024-02-22T18:39:24Z) - Causal Discovery and Prediction: Methods and Algorithms [0.0]
In this thesis we introduce a generic a-priori assessment of each possible intervention.
We propose an active learning algorithm that identifies the causal relations in any given causal model.
arXiv Detail & Related papers (2023-09-18T01:19:37Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Bayesian Model Averaging for Data Driven Decision Making when Causality
is Partially Known [0.0]
We use ensemble methods like Bayesian Model Averaging (BMA) to infer set of causal graphs.
We provide decisions by computing the expected value and risk of potential interventions explicitly.
arXiv Detail & Related papers (2021-05-12T01:55:45Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
We propose Amortized Causal Discovery, a novel framework to learn to infer causal relations from time-series data.
We demonstrate experimentally that this approach, implemented as a variational model, leads to significant improvements in causal discovery performance.
arXiv Detail & Related papers (2020-06-18T19:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.