Learning Connectivity for Data Distribution in Robot Teams
- URL: http://arxiv.org/abs/2103.05091v1
- Date: Mon, 8 Mar 2021 21:48:55 GMT
- Title: Learning Connectivity for Data Distribution in Robot Teams
- Authors: Ekaterina Tolstaya, Landon Butler, Daniel Mox, James Paulos, Vijay
Kumar, Alejandro Ribeiro
- Abstract summary: We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
- Score: 96.39864514115136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many algorithms for control of multi-robot teams operate under the assumption
that low-latency, global state information necessary to coordinate agent
actions can readily be disseminated among the team. However, in harsh
environments with no existing communication infrastructure, robots must form
ad-hoc networks, forcing the team to operate in a distributed fashion. To
overcome this challenge, we propose a task-agnostic, decentralized, low-latency
method for data distribution in ad-hoc networks using Graph Neural Networks
(GNN). Our approach enables multi-agent algorithms based on global state
information to function by ensuring it is available at each robot. To do this,
agents glean information about the topology of the network from packet
transmissions and feed it to a GNN running locally which instructs the agent
when and where to transmit the latest state information. We train the
distributed GNN communication policies via reinforcement learning using the
average Age of Information as the reward function and show that it improves
training stability compared to task-specific reward functions. Our approach
performs favorably compared to industry-standard methods for data distribution
such as random flooding and round robin. We also show that the trained policies
generalize to larger teams of both static and mobile agents.
Related papers
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Robot Fleet Learning via Policy Merging [58.5086287737653]
We propose FLEET-MERGE to efficiently merge policies in the fleet setting.
We show that FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the Meta-World environment.
We introduce a novel robotic tool-use benchmark, FLEET-TOOLS, for fleet policy learning in compositional and contact-rich robot manipulation tasks.
arXiv Detail & Related papers (2023-10-02T17:23:51Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
Collaboration in large robot swarms to achieve a common global objective is a challenging problem in large environments.
The robots must execute a Perception-Action-Communication loop -- they perceive their local environment, communicate with other robots, and take actions in real time.
Recently, this has been addressed using Graph Neural Networks (GNNs) for applications such as flocking and coverage control.
This paper proposes a framework for asynchronous PAC in robot swarms, where decentralized GNNs are used to compute navigation actions and generate messages for communication.
arXiv Detail & Related papers (2023-09-18T21:20:50Z) - Mean-Field Multi-Agent Reinforcement Learning: A Decentralized Network
Approach [6.802025156985356]
This paper proposes a framework called localized training and decentralized execution to study MARL with network of states.
The key idea is to utilize the homogeneity of agents and regroup them according to their states, thus the formulation of a networked Markov decision process.
arXiv Detail & Related papers (2021-08-05T16:52:36Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - BayGo: Joint Bayesian Learning and Information-Aware Graph Optimization [48.30183416069897]
BayGo is a novel fully decentralized joint Bayesian learning and graph optimization framework.
We show that our framework achieves faster convergence and higher accuracy compared to fully-connected and star topology graphs.
arXiv Detail & Related papers (2020-11-09T11:16:55Z) - Who2com: Collaborative Perception via Learnable Handshake Communication [34.29310680302486]
We propose the problem of collaborative perception, where robots can combine their local observations with those of neighboring agents in a learnable way to improve accuracy on a perception task.
Inspired by networking communication protocols, we propose a multi-stage handshake communication mechanism where the neural network can learn to compress relevant information needed for each stage.
We show that for the semantic segmentation task, our handshake communication method significantly improves accuracy by approximately 20% over decentralized baselines, and is comparable to centralized ones using a quarter of the bandwidth.
arXiv Detail & Related papers (2020-03-21T04:16:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.