Who2com: Collaborative Perception via Learnable Handshake Communication
- URL: http://arxiv.org/abs/2003.09575v1
- Date: Sat, 21 Mar 2020 04:16:22 GMT
- Title: Who2com: Collaborative Perception via Learnable Handshake Communication
- Authors: Yen-Cheng Liu, Junjiao Tian, Chih-Yao Ma, Nathan Glaser, Chia-Wen Kuo
and Zsolt Kira
- Abstract summary: We propose the problem of collaborative perception, where robots can combine their local observations with those of neighboring agents in a learnable way to improve accuracy on a perception task.
Inspired by networking communication protocols, we propose a multi-stage handshake communication mechanism where the neural network can learn to compress relevant information needed for each stage.
We show that for the semantic segmentation task, our handshake communication method significantly improves accuracy by approximately 20% over decentralized baselines, and is comparable to centralized ones using a quarter of the bandwidth.
- Score: 34.29310680302486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose the problem of collaborative perception, where
robots can combine their local observations with those of neighboring agents in
a learnable way to improve accuracy on a perception task. Unlike existing work
in robotics and multi-agent reinforcement learning, we formulate the problem as
one where learned information must be shared across a set of agents in a
bandwidth-sensitive manner to optimize for scene understanding tasks such as
semantic segmentation. Inspired by networking communication protocols, we
propose a multi-stage handshake communication mechanism where the neural
network can learn to compress relevant information needed for each stage.
Specifically, a target agent with degraded sensor data sends a compressed
request, the other agents respond with matching scores, and the target agent
determines who to connect with (i.e., receive information from). We
additionally develop the AirSim-CP dataset and metrics based on the AirSim
simulator where a group of aerial robots perceive diverse landscapes, such as
roads, grasslands, buildings, etc. We show that for the semantic segmentation
task, our handshake communication method significantly improves accuracy by
approximately 20% over decentralized baselines, and is comparable to
centralized ones using a quarter of the bandwidth.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) networks through the integration of multi-task learning.
We employ deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver.
We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases.
arXiv Detail & Related papers (2024-01-03T04:01:20Z) - Simulation of robot swarms for learning communication-aware coordination [0.0]
We train end-to-end Neural Networks that take as input local observations obtained from an omniscient centralised controller.
Experiments are run in Enki, a high-performance open-source simulator for planar robots.
arXiv Detail & Related papers (2023-02-25T17:17:40Z) - A Robot Web for Distributed Many-Device Localisation [18.417301483203996]
We show that a distributed network of robots can collaborate to globally localise via efficient ad-hoc peer to peer communication.
We show in simulations with up to 1000 robots interacting in arbitrary patterns that our solution convergently achieves global accuracy as accurate as a non-linear factor graph solver.
arXiv Detail & Related papers (2022-02-07T16:00:25Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
We introduce the collaborative multi-object navigation task CoMON.
In this task, an oracle agent has detailed environment information in the form of a map.
It communicates with a navigator agent that perceives the environment visually and is tasked to find a sequence of goals.
We show that the emergent communication can be grounded to the agent observations and the spatial structure of the 3D environment.
arXiv Detail & Related papers (2021-10-12T06:56:11Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Networked Multi-Agent Reinforcement Learning with Emergent Communication [18.47483427884452]
Multi-Agent Reinforcement Learning (MARL) methods find optimal policies for agents that operate in the presence of other learning agents.
One way to coordinate is by learning to communicate with each other.
Can the agents develop a language while learning to perform a common task?
arXiv Detail & Related papers (2020-04-06T16:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.