Risk Prediction on Traffic Accidents using a Compact Neural Model for
Multimodal Information Fusion over Urban Big Data
- URL: http://arxiv.org/abs/2103.05107v1
- Date: Sun, 21 Feb 2021 08:21:19 GMT
- Title: Risk Prediction on Traffic Accidents using a Compact Neural Model for
Multimodal Information Fusion over Urban Big Data
- Authors: Wenshan Wang, Su Yang, and Weishan Zhang
- Abstract summary: Predicting risk map of traffic accidents is vital for accident prevention and early planning of emergency response.
Here, the challenge lies in the multimodal nature of urban big data.
We propose a compact neural ensemble model to fusing in multimodal features and develop some new features such as fractal road complexity measure in satellite images, taxifitting flows, POIs, and road width and connectivity in OpenStreetMap.
The solution is more promising in performance than the baseline methods and the single-modality data based solutions.
- Score: 4.467592626294754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting risk map of traffic accidents is vital for accident prevention and
early planning of emergency response. Here, the challenge lies in the
multimodal nature of urban big data. We propose a compact neural ensemble model
to alleviate overfitting in fusing multimodal features and develop some new
features such as fractal measure of road complexity in satellite images, taxi
flows, POIs, and road width and connectivity in OpenStreetMap. The solution is
more promising in performance than the baseline methods and the single-modality
data based solutions. After visualization from a micro view, the visual
patterns of the scenes related to high and low risk are revealed, providing
lessons for future road design. From city point of view, the predicted risk map
is close to the ground truth, and can act as the base in optimizing spatial
configuration of resources for emergency response, and alarming signs. To the
best of our knowledge, it is the first work to fuse visual and spatio-temporal
features in traffic accident prediction while advances to bridge the gap
between data mining based urban computing and computer vision based urban
perception.
Related papers
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Urban Traffic Accident Risk Prediction Revisited: Regionality, Proximity, Similarity and Sparsity [18.566139471849844]
Traffic accidents pose a significant risk to human health and property safety.
To prevent traffic accidents, predicting their risks has garnered growing interest.
We argue that a desired prediction solution should demonstrate resilience to the complexity of traffic accidents.
arXiv Detail & Related papers (2024-07-29T03:10:15Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling [0.0]
This study aims to develop a predictive model for congestion at intersections in major U.S. cities.
The dataset encompasses 27 features, including coordinates, street names, time of day, and traffic metrics.
arXiv Detail & Related papers (2024-04-12T22:53:41Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
Existing machine learning approaches tend to focus on predicting traffic accidents in isolation.
To incorporate graph structure information, Graph Neural Networks (GNNs) can be naturally applied.
Applying GNNs to the accident prediction problem faces challenges due to the lack of suitable graph-structured traffic accident datasets.
arXiv Detail & Related papers (2023-04-17T22:18:58Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
Existing datasets in traffic accidents are either small-scale, not from surveillance cameras, not open-sourced, or not built for freeway scenes.
After integration and annotation by various dimensions, a large-scale traffic accidents dataset named TAD is proposed in this work.
arXiv Detail & Related papers (2022-09-26T03:00:50Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
We propose a neural motion planner (NMP) for learning to drive autonomously in complex urban scenarios.
We design a holistic model that takes as input raw LIDAR data and a HD map and produces interpretable intermediate representations.
We demonstrate the effectiveness of our approach in real-world driving data captured in several cities in North America.
arXiv Detail & Related papers (2021-01-17T14:16:12Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.