Road Network Guided Fine-Grained Urban Traffic Flow Inference
- URL: http://arxiv.org/abs/2109.14251v3
- Date: Thu, 26 Oct 2023 02:52:39 GMT
- Title: Road Network Guided Fine-Grained Urban Traffic Flow Inference
- Authors: Lingbo Liu and Mengmeng Liu and Guanbin Li and Ziyi Wu and Junfan Lin
and Liang Lin
- Abstract summary: Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
- Score: 108.64631590347352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate inference of fine-grained traffic flow from coarse-grained one is an
emerging yet crucial problem, which can help greatly reduce the number of the
required traffic monitoring sensors for cost savings. In this work, we notice
that traffic flow has a high correlation with road network, which was either
completely ignored or simply treated as an external factor in previous works.
To facilitate this problem, we propose a novel Road-Aware Traffic Flow
Magnifier (RATFM) that explicitly exploits the prior knowledge of road networks
to fully learn the road-aware spatial distribution of fine-grained traffic
flow. Specifically, a multi-directional 1D convolutional layer is first
introduced to extract the semantic feature of the road network. Subsequently,
we incorporate the road network feature and coarse-grained flow feature to
regularize the short-range spatial distribution modeling of road-relative
traffic flow. Furthermore, we take the road network feature as a query to
capture the long-range spatial distribution of traffic flow with a transformer
architecture. Benefiting from the road-aware inference mechanism, our method
can generate high-quality fine-grained traffic flow maps. Extensive experiments
on three real-world datasets show that the proposed RATFM outperforms
state-of-the-art models under various scenarios. Our code and datasets are
released at {\url{https://github.com/luimoli/RATFM}}.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph [10.675666104503119]
We propose Fine-grained Deep Traffic Inference, as termedI.
We construct a fine-grained traffic graph based on traffic signals to model the inter-road relations.
We are the first to conduct the city-level fine-grained traffic prediction.
arXiv Detail & Related papers (2023-06-19T14:03:42Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control.
Here, we present a simple deep learning framework called TraffNet that learns the mechanisms of traffic generation for what-if pre-diction.
arXiv Detail & Related papers (2023-03-28T13:12:17Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on
Graph Neural Networks and Continual Learning [10.205873494981633]
We propose a Streaming Traffic Flow Forecasting Framework, TrafficStream, based on Graph Neural Networks (GNNs) and Continual Learning (CL)
A JS-divergence-based algorithm is proposed to mine new traffic patterns.
We construct a streaming traffic dataset to verify the efficiency and effectiveness of our model.
arXiv Detail & Related papers (2021-06-11T09:42:37Z) - Convolutional Recurrent Network for Road Boundary Extraction [99.55522995570063]
We tackle the problem of drivable road boundary extraction from LiDAR and camera imagery.
We design a structured model where a fully convolutional network obtains deep features encoding the location and direction of road boundaries.
We showcase the effectiveness of our method on a large North American city where we obtain perfect topology of road boundaries 99.3% of the time.
arXiv Detail & Related papers (2020-12-21T18:59:12Z) - Urban Traffic Flow Forecast Based on FastGCRNN [14.445176586630465]
It is hard to apply Fast Graph Contemporal Recurrent Neural Network (GCRN) to the large scale networks due to high computational complexity.
We propose to abstract the road network into a geometric graph and build a Fast Graph Contemporal Recurrent Neural Network (GCRN) to model the spatial-temporal dependencies of traffic flow.
Specifically, We use FastGCN unit to efficiently capture the topological relationship between the roads and the surrounding roads in the graph with reducing the computational complexity through importance sampling.
arXiv Detail & Related papers (2020-09-17T06:05:05Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
We present a novel framework for modeling traffic congestion events over road networks.
Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events.
Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion.
arXiv Detail & Related papers (2020-05-15T04:22:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.