Deep reinforcement learning in medical imaging: A literature review
- URL: http://arxiv.org/abs/2103.05115v1
- Date: Fri, 5 Mar 2021 15:12:49 GMT
- Title: Deep reinforcement learning in medical imaging: A literature review
- Authors: S. Kevin Zhou, Hoang Ngan Le, Khoa Luu, Hien V. Nguyen, Nicholas
Ayache
- Abstract summary: Deep reinforcement learning (DRL) augments the reinforcement learning framework, which learns a sequence of actions that maximizes the expected reward.
Recent works have demonstrated the great potential of DRL in medicine and healthcare.
- Score: 17.13198095624744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) augments the reinforcement learning
framework, which learns a sequence of actions that maximizes the expected
reward, with the representative power of deep neural networks. Recent works
have demonstrated the great potential of DRL in medicine and healthcare. This
paper presents a literature review of DRL in medical imaging. We start with a
comprehensive tutorial of DRL, including the latest model-free and model-based
algorithms. We then cover existing DRL applications for medical imaging, which
are roughly divided into three main categories: (I) parametric medical image
analysis tasks including landmark detection, object/lesion detection,
registration, and view plane localization; (ii) solving optimization tasks
including hyperparameter tuning, selecting augmentation strategies, and neural
architecture search; and (iii) miscellaneous applications including surgical
gesture segmentation, personalized mobile health intervention, and
computational model personalization. The paper concludes with discussions of
future perspectives.
Related papers
- Deep Learning-Based Brain Image Segmentation for Automated Tumour Detection [0.0]
The objective is to leverage state-of-the-art convolutional neural networks (CNNs) on a large dataset of brain MRI scans for segmentation.
The proposed methodology applies pre-processing techniques for enhanced performance and generalizability.
arXiv Detail & Related papers (2024-04-06T15:09:49Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
We will present and discuss opportunities and challenges brought by a new deep learning method by AUC (aka underlinebf Deep underlinebf AUC classification)
arXiv Detail & Related papers (2021-11-01T15:31:32Z) - Medical Image Segmentation using 3D Convolutional Neural Networks: A
Review [25.864941088823343]
Computer-aided medical image analysis plays a significant role in assisting medical practitioners for expert clinical diagnosis and deciding the optimal treatment plan.
At present, convolutional neural networks (CNN) are the preferred choice for medical image analysis.
With the rapid advancements in 3D imaging systems and the availability of excellent hardware and software support, 3D deep learning methods are gaining popularity in medical image analysis.
arXiv Detail & Related papers (2021-08-19T03:23:08Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Searching Learning Strategy with Reinforcement Learning for 3D Medical
Image Segmentation [15.059891142682117]
We propose an automated searching approach for the optimal training strategy with reinforcement learning.
The proposed approach is validated on several tasks of 3D medical image segmentation.
arXiv Detail & Related papers (2020-06-10T14:24:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.