Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices
- URL: http://arxiv.org/abs/2208.03403v2
- Date: Mon, 17 Apr 2023 18:05:58 GMT
- Title: Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices
- Authors: Dat T. Ngo, Thao T.B. Nguyen, Hieu T. Nguyen, Dung B. Nguyen, Ha Q.
Nguyen, Hieu H. Pham
- Abstract summary: We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
- Score: 0.31317409221921133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development in representation learning techniques such as deep
neural networks and the availability of large-scale, well-annotated medical
imaging datasets have to a rapid increase in the use of supervised machine
learning in the 3D medical image analysis and diagnosis. In particular, deep
convolutional neural networks (D-CNNs) have been key players and were adopted
by the medical imaging community to assist clinicians and medical experts in
disease diagnosis and treatment. However, training and inferencing deep neural
networks such as D-CNN on high-resolution 3D volumes of Computed Tomography
(CT) scans for diagnostic tasks pose formidable computational challenges. This
challenge raises the need of developing deep learning-based approaches that are
robust in learning representations in 2D images, instead 3D scans. In this
work, we propose for the first time a new strategy to train \emph{slice-level}
classifiers on CT scans based on the descriptors of the adjacent slices along
the axis. In particular, each of which is extracted through a convolutional
neural network (CNN). This method is applicable to CT datasets with per-slice
labels such as the RSNA Intracranial Hemorrhage (ICH) dataset, which aims to
predict the presence of ICH and classify it into 5 different sub-types. We
obtain a single model in the top 4% best-performing solutions of the RSNA ICH
challenge, where model ensembles are allowed. Experiments also show that the
proposed method significantly outperforms the baseline model on CQ500. The
proposed method is general and can be applied to other 3D medical diagnosis
tasks such as MRI imaging. To encourage new advances in the field, we will make
our codes and pre-trained model available upon acceptance of the paper.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
Brain vasculature dysfunctions such as stalled blood flow in cerebral capillaries are associated with cognitive decline and pathogenesis in Alzheimer's disease.
Here, we describe a deep learning-based approach for automatic detection of stalled capillaries in brain images based on 3D convolutional neural networks.
In this setting, our approach outperformed other methods and demonstrated state-of-the-art results, achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3% specificity.
arXiv Detail & Related papers (2021-04-04T20:30:14Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data
Segmentation [0.0]
We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels.
The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16.
arXiv Detail & Related papers (2020-11-23T17:11:50Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z) - Searching Learning Strategy with Reinforcement Learning for 3D Medical
Image Segmentation [15.059891142682117]
We propose an automated searching approach for the optimal training strategy with reinforcement learning.
The proposed approach is validated on several tasks of 3D medical image segmentation.
arXiv Detail & Related papers (2020-06-10T14:24:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.