論文の概要: Multiple Instance Captioning: Learning Representations from
Histopathology Textbooks and Articles
- arxiv url: http://arxiv.org/abs/2103.05121v1
- Date: Mon, 8 Mar 2021 22:18:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-10 15:11:21.953771
- Title: Multiple Instance Captioning: Learning Representations from
Histopathology Textbooks and Articles
- Title(参考訳): 複数事例キャプション:病理学教科書と論文からの学習表現
- Authors: Jevgenij Gamper, Nasir Rajpoot
- Abstract要約: 本稿では、計算病理学 (CP) の複数のインスタンスキャプションデータセット ARCH について述べる。
ARCHには、さまざまな染色、組織型、病理の詳細な診断と形態学的記述が含まれている。
密度の高い画像キャプションで事前学習したエンコーダは、ほとんどのcpタスクで転送可能表現を学習する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present ARCH, a computational pathology (CP) multiple instance captioning
dataset to facilitate dense supervision of CP tasks. Existing CP datasets focus
on narrow tasks; ARCH on the other hand contains dense diagnostic and
morphological descriptions for a range of stains, tissue types and pathologies.
Using intrinsic dimensionality estimation, we show that ARCH is the only CP
dataset to (ARCH-)rival its computer vision analog MS-COCO Captions. We
conjecture that an encoder pre-trained on dense image captions learns
transferable representations for most CP tasks. We support the conjecture with
evidence that ARCH representation transfers to a variety of pathology sub-tasks
better than ImageNet features or representations obtained via self-supervised
or multi-task learning on pathology images alone. We release our best model and
invite other researchers to test it on their CP tasks.
- Abstract(参考訳): 本稿では,CPタスクの集中管理を容易にするために,複数インスタンスキャプションデータセットであるARCHを提案する。
既存のcpデータセットは狭いタスクに焦点を当てており、archにはさまざまな染色、組織タイプ、病理に関する詳細な診断と形態的記述が含まれている。
内在次元推定を用いて、ARCHはコンピュータビジョンアナログMS-COCOキャプションを (ARCH-) に限定した唯一のCPデータセットであることを示す。
密度の高い画像キャプションで事前学習したエンコーダは、ほとんどのcpタスクで転送可能表現を学習する。
我々は,arc表現がimagenet特徴量や自己教師付きあるいはマルチタスク学習による表現よりも様々な病理学サブタスクに転移することを示すことで,この予想を支持している。
ベストモデルをリリースし、他の研究者にCPタスクでテストするよう依頼します。
関連論文リスト
- GPC: Generative and General Pathology Image Classifier [2.6954348706500766]
本稿では,GPCと呼ばれるタスク依存型画像分類器を提案する。
GPCは、病理画像を高次元の特徴空間にマッピングし、テキストとして関連するクラスラベルを生成する。
我々は,4つの病理画像分類タスクに対して,GPCを6つのデータセットで評価した。
論文 参考訳(メタデータ) (2024-07-12T06:54:31Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Towards a Visual-Language Foundation Model for Computational Pathology [5.72536252929528]
病理組織学(CONCH)におけるコントラスト学習について紹介する。
CONCHは、様々な組織像、生医学的テキスト、タスクに依存しない事前トレーニングのソースを用いて開発された視覚言語基盤モデルである。
13種類の多様なベンチマークで評価され, 画像分類, セグメンテーション, キャプション, テキスト・ツー・イメージ検索, 画像・テキスト検索における最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-07-24T16:13:43Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
視覚言語処理における自己教師あり学習は、画像とテキストのモダリティのセマンティックアライメントを利用する。
トレーニングと微調整の両方で利用できる場合、事前のイメージとレポートを明示的に説明します。
我々のアプローチはBioViL-Tと呼ばれ、テキストモデルと共同で訓練されたCNN-Transformerハイブリッドマルチイメージエンコーダを使用する。
論文 参考訳(メタデータ) (2023-01-11T16:35:33Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
我々は、様々な弱い教師付きおよびパッチレベルのタスクに対する検証を行い、様々な自己教師付きモデルを訓練することにより、病理学における良い表現を探索する。
我々の重要な発見は、DINOベースの知識蒸留を用いたビジョントランスフォーマーが、組織像におけるデータ効率と解釈可能な特徴を学習できることを発見したことである。
論文 参考訳(メタデータ) (2022-03-01T16:14:41Z) - Towards better understanding and better generalization of few-shot
classification in histology images with contrastive learning [7.620702640026243]
ナチュラル・イメージに長年定着した話題は少ないが、ヒストロジカル・イメージに携わる作品はほとんどない。
本稿では,LCL(Contrative Learning)とLA(Latent Augmentation)を併用して,数ショットのシステムを構築することを提案する。
実験では, CLが学習したモデルは, 未知のクラスにおける組織像の教師あり学習よりも一般化し, LAはベースラインよりも一貫した利得をもたらすことがわかった。
論文 参考訳(メタデータ) (2022-02-18T07:48:34Z) - Video Coding for Machine: Compact Visual Representation Compression for
Intelligent Collaborative Analytics [101.35754364753409]
Video Coding for Machines (VCM) は、ビデオ/画像圧縮と特徴圧縮をある程度別々の研究トラックにブリッジすることを約束している。
本稿では,既存の学術・産業活動に基づくVCM方法論と哲学を要約する。
論文 参考訳(メタデータ) (2021-10-18T12:42:13Z) - Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types [50.1843146606122]
現在の最新のコンピュータビジョンモデルでは、簡単な転送学習が一般的です。
転校学習に関するこれまでの体系的な研究は限られており、作業が期待される状況は十分に理解されていない。
本論文では,非常に異なる画像領域にまたがる転送学習の広範な実験的研究を行う。
論文 参考訳(メタデータ) (2021-03-24T16:24:20Z) - Supervision and Source Domain Impact on Representation Learning: A
Histopathology Case Study [6.762603053858596]
本研究では,表現学習領域におけるディープニューラルネットワークの性能と三重項損失について検討した。
病理画像の類似性や相違性について検討し,教師なし,半教師なし,教師付き学習との違いを比較した。
学習した表現を2つの異なる病理データセットに適用し,高い精度と一般化を実現した。
論文 参考訳(メタデータ) (2020-05-10T21:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。