Exact Distribution-Free Hypothesis Tests for the Regression Function of
Binary Classification via Conditional Kernel Mean Embeddings
- URL: http://arxiv.org/abs/2103.05126v1
- Date: Mon, 8 Mar 2021 22:31:23 GMT
- Title: Exact Distribution-Free Hypothesis Tests for the Regression Function of
Binary Classification via Conditional Kernel Mean Embeddings
- Authors: Ambrus Tam\'as, Bal\'azs Csan\'ad Cs\'aji
- Abstract summary: Two hypothesis tests are proposed for the regression function of binary classification based on conditional kernel mean embeddings.
Tests are introduced in a flexible manner allowing us to control the exact probability of type I error.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we suggest two statistical hypothesis tests for the regression
function of binary classification based on conditional kernel mean embeddings.
The regression function is a fundamental object in classification as it
determines both the Bayes optimal classifier and the misclassification
probabilities. A resampling based framework is applied and combined with
consistent point estimators for the conditional kernel mean map to construct
distribution-free hypothesis tests. These tests are introduced in a flexible
manner allowing us to control the exact probability of type I error. We also
prove that both proposed techniques are consistent under weak statistical
assumptions, i.e., the type II error probabilities pointwise converge to zero.
Related papers
- Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
The paper presents a resampling framework to construct exact, distribution-free and non-asymptotically guaranteed confidence regions for the true regression function for any user-chosen confidence level.
It is proved that the constructed confidence regions are strongly consistent, that is, any false model is excluded in the long run with probability one.
arXiv Detail & Related papers (2023-08-03T15:52:27Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Kernel Robust Hypothesis Testing [20.78285964841612]
In this paper, uncertainty sets are constructed in a data-driven manner using kernel method.
The goal is to design a test that performs well under the worst-case distributions over the uncertainty sets.
For the Neyman-Pearson setting, the goal is to minimize the worst-case probability of miss detection subject to a constraint on the worst-case probability of false alarm.
arXiv Detail & Related papers (2022-03-23T23:59:03Z) - Estimation and Applications of Quantiles in Deep Binary Classification [0.0]
Quantile regression, based on check loss, is a widely used inferential paradigm in Statistics.
We consider the analogue of check loss in the binary classification setting.
We develop individualized confidence scores that can be used to decide whether a prediction is reliable.
arXiv Detail & Related papers (2021-02-09T07:07:42Z) - Predictive Value Generalization Bounds [27.434419027831044]
We study a bi-criterion framework for assessing scoring functions in the context of binary classification.
We study properties of scoring functions with respect to predictive values by deriving new distribution-free large deviation and uniform convergence bounds.
arXiv Detail & Related papers (2020-07-09T21:23:28Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Achieving Equalized Odds by Resampling Sensitive Attributes [13.114114427206678]
We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness.
This differentiable functional is used as a penalty driving the model parameters towards equalized odds.
We develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature.
arXiv Detail & Related papers (2020-06-08T00:18:34Z) - L2R2: Leveraging Ranking for Abductive Reasoning [65.40375542988416]
The abductive natural language inference task ($alpha$NLI) is proposed to evaluate the abductive reasoning ability of a learning system.
A novel $L2R2$ approach is proposed under the learning-to-rank framework.
Experiments on the ART dataset reach the state-of-the-art in the public leaderboard.
arXiv Detail & Related papers (2020-05-22T15:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.