Predictive Value Generalization Bounds
- URL: http://arxiv.org/abs/2007.05073v1
- Date: Thu, 9 Jul 2020 21:23:28 GMT
- Title: Predictive Value Generalization Bounds
- Authors: Keshav Vemuri, Nathan Srebro
- Abstract summary: We study a bi-criterion framework for assessing scoring functions in the context of binary classification.
We study properties of scoring functions with respect to predictive values by deriving new distribution-free large deviation and uniform convergence bounds.
- Score: 27.434419027831044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study a bi-criterion framework for assessing scoring
functions in the context of binary classification. The positive and negative
predictive values (ppv and npv, respectively) are conditional probabilities of
the true label matching a classifier's predicted label. The usual
classification error rate is a linear combination of these probabilities, and
therefore, concentration inequalities for the error rate do not yield
confidence intervals for the two separate predictive values. We study
generalization properties of scoring functions with respect to predictive
values by deriving new distribution-free large deviation and uniform
convergence bounds. The latter bound is stated in terms of a measure of
function class complexity that we call the order coefficient; we relate this
combinatorial quantity to the VC-subgraph dimension.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Generalization bounds for regression and classification on adaptive covering input domains [1.4141453107129398]
We focus on the generalization bound, which serves as an upper limit for the generalization error.
In the case of classification tasks, we treat the target function as a one-hot, a piece-wise constant function, and employ 0/1 loss for error measurement.
arXiv Detail & Related papers (2024-07-29T05:40:08Z) - Generating Unbiased Pseudo-labels via a Theoretically Guaranteed
Chebyshev Constraint to Unify Semi-supervised Classification and Regression [57.17120203327993]
threshold-to-pseudo label process (T2L) in classification uses confidence to determine the quality of label.
In nature, regression also requires unbiased methods to generate high-quality labels.
We propose a theoretically guaranteed constraint for generating unbiased labels based on Chebyshev's inequality.
arXiv Detail & Related papers (2023-11-03T08:39:35Z) - Distribution-Free Inference for the Regression Function of Binary
Classification [0.0]
The paper presents a resampling framework to construct exact, distribution-free and non-asymptotically guaranteed confidence regions for the true regression function for any user-chosen confidence level.
It is proved that the constructed confidence regions are strongly consistent, that is, any false model is excluded in the long run with probability one.
arXiv Detail & Related papers (2023-08-03T15:52:27Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification.
CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution.
We empirically demonstrate its effectiveness across a diverse set of classification tasks.
arXiv Detail & Related papers (2021-09-28T02:55:42Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Exact Distribution-Free Hypothesis Tests for the Regression Function of
Binary Classification via Conditional Kernel Mean Embeddings [0.0]
Two hypothesis tests are proposed for the regression function of binary classification based on conditional kernel mean embeddings.
Tests are introduced in a flexible manner allowing us to control the exact probability of type I error.
arXiv Detail & Related papers (2021-03-08T22:31:23Z) - Estimation and Applications of Quantiles in Deep Binary Classification [0.0]
Quantile regression, based on check loss, is a widely used inferential paradigm in Statistics.
We consider the analogue of check loss in the binary classification setting.
We develop individualized confidence scores that can be used to decide whether a prediction is reliable.
arXiv Detail & Related papers (2021-02-09T07:07:42Z) - Pointwise Binary Classification with Pairwise Confidence Comparisons [97.79518780631457]
We propose pairwise comparison (Pcomp) classification, where we have only pairs of unlabeled data that we know one is more likely to be positive than the other.
We link Pcomp classification to noisy-label learning to develop a progressive URE and improve it by imposing consistency regularization.
arXiv Detail & Related papers (2020-10-05T09:23:58Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
We study three notions of uncertainty quantification -- calibration, confidence intervals and prediction sets -- for binary classification in the distribution-free setting.
We derive confidence intervals for binned probabilities for both fixed-width and uniform-mass binning.
As a consequence of our 'tripod' theorems, these confidence intervals for binned probabilities lead to distribution-free calibration.
arXiv Detail & Related papers (2020-06-18T14:17:29Z) - Classifier-independent Lower-Bounds for Adversarial Robustness [13.247278149124757]
We theoretically analyse the limits of robustness to test-time adversarial and noisy examples in classification.
We use optimal transport theory to derive variational formulae for the Bayes-optimal error a classifier can make on a given classification problem.
We derive explicit lower-bounds on the Bayes-optimal error in the case of the popular distance-based attacks.
arXiv Detail & Related papers (2020-06-17T16:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.