Extended Task and Motion Planning of Long-horizon Robot Manipulation
- URL: http://arxiv.org/abs/2103.05456v1
- Date: Tue, 9 Mar 2021 14:44:08 GMT
- Title: Extended Task and Motion Planning of Long-horizon Robot Manipulation
- Authors: Tianyu Ren, Georgia Chalvatzaki, Jan Peters
- Abstract summary: Task and Motion Planning (TAMP) requires integration of symbolic reasoning with metric motion planning.
Most TAMP approaches fail to provide feasible solutions when there is missing knowledge about the environment at the symbolic level.
We propose a novel approach for decision-making on extended decision spaces over plan skeletons and action parameters.
- Score: 28.951816622135922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task and Motion Planning (TAMP) requires the integration of symbolic
reasoning with metric motion planning that accounts for the robot's actions'
geometric feasibility. This hierarchical structure inevitably prevents the
symbolic planners from accessing the environment's low-level geometric
description, vital to the problem's solution. Most TAMP approaches fail to
provide feasible solutions when there is missing knowledge about the
environment at the symbolic level. The incapability of devising alternative
high-level plans leads existing planners to a dead end. We propose a novel
approach for decision-making on extended decision spaces over plan skeletons
and action parameters. We integrate top-k planning for constructing an explicit
skeleton space, where a skeleton planner generates a variety of candidate
skeleton plans. Moreover, we effectively combine this skeleton space with the
resultant motion parameter spaces into a single extended decision space.
Accordingly, we use Monte-Carlo Tree Search (MCTS) to ensure an
exploration-exploitation balance at each decision node and optimize globally to
produce minimum-cost solutions. The proposed seamless combination of symbolic
top-k planning with streams, with the proved optimality of MCTS, leads to a
powerful planning algorithm that can handle the combinatorial complexity of
long-horizon manipulation tasks. We empirically evaluate our proposed algorithm
in challenging manipulation tasks with different domains that require
multi-stage decisions and show how our method can overcome dead-ends through
its effective alternate plans compared to its most competitive baseline method.
Related papers
- A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Optimal Integrated Task and Path Planning and Its Application to
Multi-Robot Pickup and Delivery [10.530860023128406]
We propose a generic multi-robot planning mechanism that combines an optimal task planner and an optimal path planner.
The Integrated planner, through the interaction of the task planner and the path planner, produces optimal collision-free trajectories for the robots.
arXiv Detail & Related papers (2024-03-02T17:48:40Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Lifted Sequential Planning with Lazy Constraint Generation Solvers [28.405198103927955]
This paper studies the possibilities made open by the use of Lazy Clause Generation (LCG) based approaches to Constraint Programming (CP)
We propose a novel CP model based on seminal ideas on so-called lifted causal encodings for planning as satisfiability.
We report that for planning problem instances requiring fewer plan steps our methods compare very well with the state-of-the-art in optimal sequential planning.
arXiv Detail & Related papers (2023-07-17T04:54:58Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Gradient-Based Mixed Planning with Discrete and Continuous Actions [34.885999774739055]
We propose a quadratic-based framework to simultaneously optimize continuous parameters and actions of candidate plans.
The framework is combined with a module to estimate the best plan candidate to transit initial state to the goal based on relaxation.
arXiv Detail & Related papers (2021-10-19T14:21:19Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
We propose a novel framework called Jump-Operator Dynamic Programming for quickly computing solutions within a super-exponential space of sequential sub-goal tasks.
This approach involves controlling over an ensemble of reusable goal-conditioned polices functioning as temporally extended actions.
We then identify classes of objective functions on this subspace whose solutions are invariant to the grounding, resulting in optimal zero-shot transfer.
arXiv Detail & Related papers (2020-07-06T05:13:20Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.