AdaPlanner: Adaptive Planning from Feedback with Language Models
- URL: http://arxiv.org/abs/2305.16653v1
- Date: Fri, 26 May 2023 05:52:27 GMT
- Title: AdaPlanner: Adaptive Planning from Feedback with Language Models
- Authors: Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, Chao Zhang
- Abstract summary: Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
- Score: 56.367020818139665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have recently demonstrated the potential in
acting as autonomous agents for sequential decision-making tasks. However, most
existing methods either take actions greedily without planning or rely on
static plans that are not adaptable to environmental feedback. Consequently,
the sequential decision-making performance of LLM agents degenerates with
problem complexity and plan horizons increase. We propose a closed-loop
approach, AdaPlanner, which allows the LLM agent to refine its self-generated
plan adaptively in response to environmental feedback. In AdaPlanner, the LLM
agent adaptively refines its plan from feedback with both in-plan and
out-of-plan refinement strategies. To mitigate hallucination, we develop a
code-style LLM prompt structure that facilitates plan generation across a
variety of tasks, environments, and agent capabilities. Furthermore, we propose
a skill discovery mechanism that leverages successful plans as few-shot
exemplars, enabling the agent to plan and refine with fewer task
demonstrations. Our experiments in the ALFWorld and MiniWoB++ environments
demonstrate that AdaPlanner outperforms state-of-the-art baselines by 3.73% and
4.11% while utilizing 2x and 600x fewer samples, respectively.
Related papers
- AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [89.68433168477227]
Large Language Model (LLM) based agents have garnered significant attention and are becoming increasingly popular.
This paper investigates enhancing the planning abilities of LLMs through instruction tuning.
To address this limitation, this paper explores the automated synthesis of diverse environments and a gradual range of planning tasks.
arXiv Detail & Related papers (2024-08-01T17:59:46Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
Proactive Agent Planning requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction.
We propose a novel multi-agent framework, Clarification-Execution-Planning (textttCEP), which consists of three agents specialized in clarification, execution, and planning.
arXiv Detail & Related papers (2024-06-18T14:07:28Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - PDDLEGO: Iterative Planning in Textual Environments [56.12148805913657]
Planning in textual environments has been shown to be a long-standing challenge even for current models.
We propose PDDLEGO that iteratively construct a planning representation that can lead to a partial plan for a given sub-goal.
We show that plans produced by few-shot PDDLEGO are 43% more efficient than generating plans end-to-end on the Coin Collector simulation.
arXiv Detail & Related papers (2024-05-30T08:01:20Z) - What's the Plan? Evaluating and Developing Planning-Aware Techniques for Language Models [7.216683826556268]
Large language models (LLMs) are increasingly used for applications that require planning capabilities.
We introduce SimPlan, a novel hybrid-method, and evaluate its performance in a new challenging setup.
arXiv Detail & Related papers (2024-02-18T07:42:49Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Planner reframes task planning with Large Language Models into three distinct phases.
Tree-Planner achieves state-of-the-art performance while maintaining high efficiency.
arXiv Detail & Related papers (2023-10-12T17:59:50Z) - Dynamic Planning with a LLM [15.430182858130884]
Large Language Models (LLMs) can solve many NLP tasks in zero-shot settings, but applications involving embodied agents remain problematic.
Our work presents LLM Dynamic Planner (LLM-DP), a neuro-symbolic framework where an LLM works hand-in-hand with a traditional planner to solve an embodied task.
arXiv Detail & Related papers (2023-08-11T21:17:13Z) - LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large
Language Models [27.318186938382233]
This study focuses on using large language models (LLMs) as a planner for embodied agents.
We propose a novel method, LLM-Planner, that harnesses the power of large language models to do few-shot planning.
arXiv Detail & Related papers (2022-12-08T05:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.