論文の概要: An Amharic News Text classification Dataset
- arxiv url: http://arxiv.org/abs/2103.05639v1
- Date: Wed, 10 Mar 2021 16:36:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-11 15:08:06.483498
- Title: An Amharic News Text classification Dataset
- Title(参考訳): amharic news text classification データセット
- Authors: Israel Abebe Azime and Nebil Mohammed
- Abstract要約: 6つのクラスに分類された50万以上のニュース記事からなるAmharicテキスト分類データセットの導入を目指しています。
このデータセットは、研究とより良いパフォーマンス実験を促進するための簡単なベースラインパフォーマンスで利用可能になります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In NLP, text classification is one of the primary problems we try to solve
and its uses in language analyses are indisputable. The lack of labeled
training data made it harder to do these tasks in low resource languages like
Amharic. The task of collecting, labeling, annotating, and making valuable this
kind of data will encourage junior researchers, schools, and machine learning
practitioners to implement existing classification models in their language. In
this short paper, we aim to introduce the Amharic text classification dataset
that consists of more than 50k news articles that were categorized into 6
classes. This dataset is made available with easy baseline performances to
encourage studies and better performance experiments.
- Abstract(参考訳): nlpでは、テキスト分類は私たちが解決しようとする主要な問題の1つであり、言語分析におけるその使用は説明がつかない。
ラベル付きトレーニングデータがないため、Amharicのような低リソース言語でこれらのタスクを行うのが難しくなった。
この種のデータを収集、ラベル付け、注釈付け、価値あるものにするタスクは、下級の研究者、学校、機械学習の実践者が言語に既存の分類モデルを実装することを奨励する。
本稿では,50万以上のニュース記事からなるアムハラ語のテキスト分類データセットを6つのクラスに分類することを目的とする。
このデータセットは、研究とより良いパフォーマンス実験を促進するための簡単なベースラインパフォーマンスで利用可能になります。
関連論文リスト
- Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - A multi-level multi-label text classification dataset of 19th century Ottoman and Russian literary and critical texts [8.405938712823563]
本稿では,3000以上の文書からなる多レベル多言語テキスト分類データセットを提案する。
このデータセットは19世紀のトルコ語とロシア語の文学的および批判的なテキストを特徴としている。
このデータセットに大規模言語モデル(LLM)を適用した最初の研究である。
論文 参考訳(メタデータ) (2024-07-21T12:14:45Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Izindaba-Tindzaba: Machine learning news categorisation for Long and
Short Text for isiZulu and Siswati [1.666378501554705]
南アフリカの言語は低資源言語に分類される。
この作業では、isiZuluとSiswatiのネイティブ言語用の注釈付きニュースデータセットの作成に重点が置かれた。
論文 参考訳(メタデータ) (2023-06-12T21:02:12Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - ZeroBERTo -- Leveraging Zero-Shot Text Classification by Topic Modeling [57.80052276304937]
本稿では、教師なしクラスタリングのステップを利用して、分類タスクの前に圧縮されたデータ表現を得る新しいモデルZeroBERToを提案する。
また,ZeroBERToは,FolhaUOLデータセットのF1スコアにおいて,XLM-Rを約12%上回り,長い入力と実行時間の短縮に優れた性能を示した。
論文 参考訳(メタデータ) (2022-01-04T20:08:17Z) - An open access NLP dataset for Arabic dialects : Data collection,
labeling, and model construction [0.8312466807725921]
いくつかのアラビア方言でソーシャルデータの内容のオープンデータセットを提示する。
このデータはTwitterのソーシャルネットワークから収集され、5つの国語で+50K twitsで構成されています。
このデータをオープンアクセスデータとして公開し,イノベーションを奨励し,アラビア語方言やソーシャルメディアのnlp分野の著作を奨励する。
論文 参考訳(メタデータ) (2021-02-07T01:39:52Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
本稿では,ラベル保存型入力摂動の最大損失を最小限に抑える半教師付き対向学習法を提案する。
多様な言語群に対する文書分類と意図分類において,有効性が著しく向上するのを観察する。
論文 参考訳(メタデータ) (2020-07-29T19:38:35Z) - Low resource language dataset creation, curation and classification:
Setswana and Sepedi -- Extended Abstract [2.3801001093799115]
SetswanaとSepediのニュースの見出しに焦点を当てたデータセットを作成します。
分類のためのベースラインを提案し,低リソース言語に適したデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-03-30T18:03:15Z) - Investigating an approach for low resource language dataset creation,
curation and classification: Setswana and Sepedi [2.3801001093799115]
SetswanaとSepediのニュースの見出しに焦点を当てたデータセットを作成します。
ニューストピックの分類タスクも作成します。
本稿では,低リソース言語に適したデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T13:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。