Deep neural network approximation for high-dimensional parabolic
Hamilton-Jacobi-Bellman equations
- URL: http://arxiv.org/abs/2103.05744v1
- Date: Tue, 9 Mar 2021 22:34:13 GMT
- Title: Deep neural network approximation for high-dimensional parabolic
Hamilton-Jacobi-Bellman equations
- Authors: Philipp Grohs and Lukas Herrmann
- Abstract summary: It is shown that for HJB equations that arise in the context of the optimal control of certain Markov processes the solution can be approximated by deep neural networks without incurring the curse of dimension.
- Score: 5.863264019032882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The approximation of solutions to second order Hamilton--Jacobi--Bellman
(HJB) equations by deep neural networks is investigated. It is shown that for
HJB equations that arise in the context of the optimal control of certain
Markov processes the solution can be approximated by deep neural networks
without incurring the curse of dimension. The dynamics is assumed to depend
affinely on the controls and the cost depends quadratically on the controls.
The admissible controls take values in a bounded set.
Related papers
- Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems [13.285775352653546]
This paper proposes a system of neural differential equations representing first- and second-order score functions along trajectories based on deep neural networks.
We reformulate the mean viscous field control (MFC) problem with individual noises into an unconstrained optimization problem framed by the proposed neural ODE system.
arXiv Detail & Related papers (2024-09-24T21:45:55Z) - Hamilton-Jacobi Based Policy-Iteration via Deep Operator Learning [9.950128864603599]
We incorporate DeepONet with a recently developed policy scheme to numerically solve optimal control problems.
A notable feature of our approach is that once the neural network is trained, the solution to the optimal control problem and HJB equations can be inferred quickly.
arXiv Detail & Related papers (2024-06-16T12:53:17Z) - Neural Time-Reversed Generalized Riccati Equation [60.92253836775246]
Hamiltonian equations offer an interpretation of optimality through auxiliary variables known as costates.
This paper introduces a novel neural-based approach to optimal control, with the aim of working forward-in-time.
arXiv Detail & Related papers (2023-12-14T19:29:37Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - Solving Elliptic Optimal Control Problems via Neural Networks and Optimality System [3.8704302640118864]
We investigate a neural network based solver for optimal control problems (without / with box constraint)
It employs deep neural networks to represent the solutions to the reduced system.
We present several numerical examples to illustrate the method and compare it with two existing ones.
arXiv Detail & Related papers (2023-08-23T05:18:19Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Deep Graphic FBSDEs for Opinion Dynamics Stochastic Control [27.38625075499457]
We present a scalable deep learning approach to solve opinion dynamics optimal control problems with mean field term coupling in the dynamics and cost function.
The proposed framework opens up the possibility for future applications on extremely large-scale problems.
arXiv Detail & Related papers (2022-04-05T22:07:32Z) - A control method for solving high-dimensional Hamiltonian systems
through deep neural networks [0.2752817022620644]
We first introduce a corresponding optimal control problem such that the Hamiltonian system of control problem is exactly what we need to solve, then develop two different algorithms suitable for different cases of the control problem and approximate the control via deep neural networks.
From the numerical results, comparing with the Deep FBSDE method which was developed previously from the view of solving FBSDEs, the novel algorithms converge faster, which means that they require fewer training steps, and demonstrate more stable convergences for different Hamiltonian systems.
arXiv Detail & Related papers (2021-11-04T05:22:08Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Numerical estimation of reachable and controllability sets for a
two-level open quantum system driven by coherent and incoherent controls [77.34726150561087]
The article considers a two-level open quantum system governed by the Gorini--Kossakowski--Lindblad--Sudarshan master equation.
The system is analyzed using Bloch parametrization of the system's density matrix.
arXiv Detail & Related papers (2021-06-18T14:23:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.