Deep Graphic FBSDEs for Opinion Dynamics Stochastic Control
- URL: http://arxiv.org/abs/2204.02506v1
- Date: Tue, 5 Apr 2022 22:07:32 GMT
- Title: Deep Graphic FBSDEs for Opinion Dynamics Stochastic Control
- Authors: Tianrong Chen, Ziyi Wang, Evangelos A. Theodorou
- Abstract summary: We present a scalable deep learning approach to solve opinion dynamics optimal control problems with mean field term coupling in the dynamics and cost function.
The proposed framework opens up the possibility for future applications on extremely large-scale problems.
- Score: 27.38625075499457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a scalable deep learning approach to solve opinion
dynamics stochastic optimal control problems with mean field term coupling in
the dynamics and cost function. Our approach relies on the probabilistic
representation of the solution of the Hamilton-Jacobi-Bellman partial
differential equation. Grounded on the nonlinear version of the Feynman-Kac
lemma, the solutions of the Hamilton-Jacobi-Bellman partial differential
equation are linked to the solution of Forward-Backward Stochastic Differential
Equations. These equations can be solved numerically using a novel deep neural
network with architecture tailored to the problem in consideration. The
resulting algorithm is tested on a polarized opinion consensus experiment. The
large-scale (10K) agents experiment validates the scalability and
generalizability of our algorithm. The proposed framework opens up the
possibility for future applications on extremely large-scale problems.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering.
We discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges.
arXiv Detail & Related papers (2024-05-31T14:24:39Z) - Neural Time-Reversed Generalized Riccati Equation [60.92253836775246]
Hamiltonian equations offer an interpretation of optimality through auxiliary variables known as costates.
This paper introduces a novel neural-based approach to optimal control, with the aim of working forward-in-time.
arXiv Detail & Related papers (2023-12-14T19:29:37Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
We introduce a new class of spatially probabilistic physics and data informed deep latent models for PDEs.
We solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields.
We show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available.
arXiv Detail & Related papers (2023-01-26T11:30:56Z) - A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs [1.0703175070560689]
We first transform the problem into a Stackelberg differential game problem (leader-follower problem)
We compute two examples of the investment-consumption problem solved through utility models.
The results of both examples demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-04-12T13:31:19Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - A Probabilistic State Space Model for Joint Inference from Differential
Equations and Data [23.449725313605835]
We show a new class of solvers for ordinary differential equations (ODEs) that phrase the solution process directly in terms of Bayesian filtering.
It then becomes possible to perform approximate Bayesian inference on the latent force as well as the ODE solution in a single, linear complexity pass of an extended Kalman filter.
We demonstrate the expressiveness and performance of the algorithm by training a non-parametric SIRD model on data from the COVID-19 outbreak.
arXiv Detail & Related papers (2021-03-18T10:36:09Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Actor-Critic Algorithm for High-dimensional Partial Differential
Equations [1.5644600570264835]
We develop a deep learning model to solve high-dimensional nonlinear parabolic partial differential equations.
The Markovian property of the BSDE is utilized in designing our neural network architecture.
We demonstrate those improvements by solving a few well-known classes of PDEs.
arXiv Detail & Related papers (2020-10-07T20:53:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.