Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber
- URL: http://arxiv.org/abs/2103.05992v1
- Date: Wed, 10 Mar 2021 11:02:45 GMT
- Title: Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber
- Authors: Beatrice Da Lio, Daniele Cozzolino, Nicola Biagi, Yunhong Ding,
Karsten Rottwitt, Alessandro Zavatta, Davide Bacco, Leif K. Oxenl{\o}we
- Abstract summary: We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
- Score: 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) protocols based on high-dimensional quantum
states have shown the route to increase the key rate generation while
benefiting of enhanced error tolerance, thus overcoming the limitations of
two-dimensional QKD protocols. Nonetheless, the reliable transmission through
fiber links of high-dimensional quantum states remains an open challenge that
must be addressed to boost their application. Here, we demonstrate the reliable
transmission over a 2 km long multicore fiber of path-encoded high-dimensional
quantum states. Leveraging on a phase-locked loop system, a stable
interferometric detection is guaranteed, allowing for low error rates and the
generation of 6.3 Mbit/s of secret key rate.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - High-dimensional quantum key distribution using energy-time entanglement
over 242 km partially deployed fiber [8.905152890117282]
Entanglement-based quantum key distribution (QKD) is an essential ingredient in quantum communication.
We report an experimental QKD using energy-time entangled photon pairs that transmit over optical fibers of 242 km.
We generate secure keys with secure key rates of 0.22 bps and 0.06 bps in and finite-size regime.
arXiv Detail & Related papers (2022-12-06T01:37:57Z) - Long-distance twin-field quantum key distribution with entangled sources [4.334669226849793]
We propose a scheme to implement TFQKD with an entangled coherent state source in the middle to increase its range.
Our work is a promising step toward long-distance secure communication and is greatly compatible with future global quantum network.
arXiv Detail & Related papers (2021-11-06T02:01:42Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Twin-Field Quantum Key Distribution over 511 km Optical Fiber Linking
two Distant Metropolitans [21.87659562677264]
We complete a twin field QKD (TF-QKD) and distribute secure keys without any trusted repeater over a 511 km long haul fiber trunk.
Our secure key rate is around 3 orders of magnitudes greater than what is expected if the previous QKD field test system over the same length were applied.
The efficient quantum-state transmission and stable single-photon interference over such a long distance deployed fiber paves the way to large-scale fiber quantum networks.
arXiv Detail & Related papers (2021-01-31T11:25:00Z) - Efficient time-bin encoding for practical high-dimensional quantum key
distribution [0.0]
High-dimensional quantum key distribution (QKD) allows to achieve information-theoretic secure communications.
We present a novel scheme for fiber-based 4-dimensional QKD, with time and phase encoding and one-decoy state technique.
arXiv Detail & Related papers (2020-04-07T15:51:29Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z) - Stable transmission of high-dimensional quantum states over a 2 km
multicore fiber [45.82374977939355]
We prove how path encoded high-dimensional quantum states can be reliably transmitted over a 2 km long multicore fiber.
We take advantage of a phase-locked loop system guaranteeing a stable interferometric detection.
arXiv Detail & Related papers (2020-01-30T09:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.