Stable transmission of high-dimensional quantum states over a 2 km
multicore fiber
- URL: http://arxiv.org/abs/2001.11226v1
- Date: Thu, 30 Jan 2020 09:19:36 GMT
- Title: Stable transmission of high-dimensional quantum states over a 2 km
multicore fiber
- Authors: Beatrice Da Lio, Davide Bacco, Daniele Cozzolino, Nicola Biagi, Tummas
Napoleon Arge, Emil Larsen, Karsten Rottwitt, Yunhong Ding, Alessandro
Zavatta, and Leif Katsuo Oxenl{\o}we
- Abstract summary: We prove how path encoded high-dimensional quantum states can be reliably transmitted over a 2 km long multicore fiber.
We take advantage of a phase-locked loop system guaranteeing a stable interferometric detection.
- Score: 45.82374977939355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-dimensional quantum states have already settled their advantages in
different quantum technology applications. However, their reliable transmission
in fiber links remains an open challenge that must be addressed to boost their
application, e.g. in the future quantum internet. Here, we prove how path
encoded high-dimensional quantum states can be reliably transmitted over a 2 km
long multicore fiber, taking advantage of a phase-locked loop system
guaranteeing a stable interferometric detection.
Related papers
- Quantum teleportation with dissimilar quantum dots over a hybrid quantum network [24.574514809868866]
Photonic quantum information processing in quantum networks lays the foundation for cloud quantum computing, secure communication, and the realization of a global quantum internet.
Here, we demonstrate the exploitation of distinct quantum emitters to implement all-photonic quantum teleportation among distant parties.
The achieved teleportation state fidelity reaches up to 82+-1%, above the classical limit by more than 10 standard deviations.
arXiv Detail & Related papers (2024-11-19T10:16:58Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Hertz-rate metropolitan quantum teleportation [14.255276189916845]
We demonstrate a quantum teleportation system which transfers quantum states carried by independent photons at a rate of 7.1$pm$0.4 Hz over 64-km-long fiber channel.
An average single-photon fidelity of $geqslant$ 90.6$pm$2.6% is achieved, which exceeds the maximum fidelity of 2/3 in classical regime.
Our result marks an important milestone towards quantum networks and opens the door to exploring quantum entanglement based informatic applications for the future quantum internet.
arXiv Detail & Related papers (2023-03-24T09:03:35Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Two-photon comb with wavelength conversion and 20-km distribution for
quantum communication [0.0]
In this study, we demonstrate a versatile entanglement source in the telecom band for fiber-based quantum internet.
After a total distribution length of 20-km in fiber, two-photon correlation is observed with an easily identifiable normalized correlation coefficient.
The presented implementation promises an efficient method for entanglement distribution that is compatible with quantum memory and frequency-multiplexed long-distance quantum communication applications.
arXiv Detail & Related papers (2020-10-12T03:56:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.