論文の概要: Spatially Consistent Representation Learning
- arxiv url: http://arxiv.org/abs/2103.06122v1
- Date: Wed, 10 Mar 2021 15:23:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-11 15:04:21.518698
- Title: Spatially Consistent Representation Learning
- Title(参考訳): 空間的一貫性表現学習
- Authors: Byungseok Roh, Wuhyun Shin, Ildoo Kim, Sungwoong Kim
- Abstract要約: 本研究では,空間的に一貫した表現学習アルゴリズム(SCRL)を提案する。
ランダムに切り抜かれた局所領域のコヒーレントな空間表現を作ろうとする新しい自己教師付き目的を考案する。
ベンチマークデータセットを用いた下流のローカライゼーションタスクでは、提案したSCRLは大幅な性能改善を示す。
- 参考スコア(独自算出の注目度): 12.120041613482558
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Self-supervised learning has been widely used to obtain transferrable
representations from unlabeled images. Especially, recent contrastive learning
methods have shown impressive performances on downstream image classification
tasks. While these contrastive methods mainly focus on generating invariant
global representations at the image-level under semantic-preserving
transformations, they are prone to overlook spatial consistency of local
representations and therefore have a limitation in pretraining for localization
tasks such as object detection and instance segmentation. Moreover,
aggressively cropped views used in existing contrastive methods can minimize
representation distances between the semantically different regions of a single
image.
In this paper, we propose a spatially consistent representation learning
algorithm (SCRL) for multi-object and location-specific tasks. In particular,
we devise a novel self-supervised objective that tries to produce coherent
spatial representations of a randomly cropped local region according to
geometric translations and zooming operations. On various downstream
localization tasks with benchmark datasets, the proposed SCRL shows significant
performance improvements over the image-level supervised pretraining as well as
the state-of-the-art self-supervised learning methods.
- Abstract(参考訳): 自己教師付き学習はラベルのない画像から転送可能な表現を得るために広く使われている。
特に,近年のコントラスト学習手法は,下流画像分類課題において印象的な性能を示している。
これらの対照的手法は、セマンティック保存変換の下でイメージレベルで不変なグローバル表現を生成することに焦点を当てているが、局所表現の空間的一貫性を見落としやすいため、オブジェクト検出やインスタンスセグメンテーションなどのローカリゼーションタスクの事前トレーニングに制限がある。
さらに、既存のコントラスト法で使用される積極的に切り抜かれたビューは、単一の画像の意味的に異なる領域間の表現距離を最小化することができる。
本稿では,多目的および位置特定タスクのための空間整合表現学習アルゴリズム(scrl)を提案する。
特に,ランダムに切り取られた局所領域のコヒーレントな空間表現を幾何学的翻訳やズーム操作に従って生成しようとする,新しい自己教師付き目的を考案する。
ベンチマークデータセットを用いたダウンストリームローカライズタスクでは,画像レベルの教師付き事前学習や最先端の自己教師付き学習手法よりも優れたパフォーマンス改善が得られた。
関連論文リスト
- DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
弱教師付きセマンティックセグメンテーションアプローチは通常、初期シード生成にクラスアクティベーションマップ(CAM)に依存する。
DALNetは、テキストの埋め込みを利用して、さまざまなレベルの粒度のオブジェクトの包括的理解と正確な位置決めを強化する。
このアプローチは特に、シングルステージの手法として、より効率的なエンドツーエンドプロセスを可能にします。
論文 参考訳(メタデータ) (2024-09-24T06:51:49Z) - Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation [13.948425538725138]
画素単位の領域不変性を学習する際のモデルとして,Pixel-Level Domain Adaptation (PLDA)法を提案する。
我々は,幅広い環境下でのアプローチの有効性を実験的に実証した。
論文 参考訳(メタデータ) (2024-08-04T14:14:54Z) - Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning [50.88504784466931]
マルチタスク密度予測にはセマンティックセグメンテーション、深さ推定、表面正規推定が含まれる。
既存のソリューションは通常、グローバルなクロスタスク画像マッチングのためのグローバルなイメージ表現の学習に依存している。
本提案では,ガウス分布を用いた地域表現をモデル化する。
論文 参考訳(メタデータ) (2024-03-15T12:41:30Z) - Localized Region Contrast for Enhancing Self-Supervised Learning in
Medical Image Segmentation [27.82940072548603]
本稿では,地域コントラスト(LRC)を統合した新しいコントラスト学習フレームワークを提案する。
提案手法では,Felzenszwalbのアルゴリズムによるスーパーピクセルの同定と,新しいコントラッシブサンプリング損失を用いた局所コントラスト学習を行う。
論文 参考訳(メタデータ) (2023-04-06T22:43:13Z) - Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning [61.5469708038966]
本稿では,効果的な画像操作検出のためのコントラスト学習(PCL)を提案する。
我々のPCLは、RGBとノイズビューから2種類のグローバル特徴を抽出し、2ストリームアーキテクチャで構成されている。
我々のPCLは、実際にラベル付けされていないデータに容易に適用でき、手作業によるラベル付けコストを削減し、より一般化可能な機能を促進することができる。
論文 参考訳(メタデータ) (2022-10-16T13:30:13Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Self-supervised Contrastive Learning for Cross-domain Hyperspectral
Image Representation [26.610588734000316]
本稿では,アノテートが本質的に困難であるハイパースペクトル画像に適した自己教師型学習フレームワークを提案する。
提案するフレームワークアーキテクチャは、クロスドメインCNNを利用して、異なるハイパースペクトル画像から表現を学習する。
実験結果は、スクラッチや他の移動学習法から学習したモデルに対して、提案した自己教師型表現の利点を示す。
論文 参考訳(メタデータ) (2022-02-08T16:16:45Z) - Towards Fewer Annotations: Active Learning via Region Impurity and
Prediction Uncertainty for Domain Adaptive Semantic Segmentation [19.55572909866489]
ドメインシフトに基づく意味的セグメンテーションのための領域ベースアクティブラーニング手法を提案する。
領域不純物・予測不確かさ(AL-RIPU)を用いた能動学習では,画像領域の空間的隣接性を特徴付ける新たな獲得戦略が導入された。
我々の手法は、教師付きパフォーマンスにほぼ到達するためにはほとんどアノテーションを必要とせず、最先端の手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-25T06:40:58Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。