Time-uniform central limit theory and asymptotic confidence sequences
- URL: http://arxiv.org/abs/2103.06476v9
- Date: Thu, 14 Mar 2024 01:23:05 GMT
- Title: Time-uniform central limit theory and asymptotic confidence sequences
- Authors: Ian Waudby-Smith, David Arbour, Ritwik Sinha, Edward H. Kennedy, Aaditya Ramdas,
- Abstract summary: Confidence sequences (CS) provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data.
CSs are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of confidence intervals.
Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees.
- Score: 34.00292366598841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.
Related papers
- Asymptotic Time-Uniform Inference for Parameters in Averaged Stochastic Approximation [23.89036529638614]
We study time-uniform statistical inference for parameters in approximation (SA)
We analyze the almost-sure convergence rates of the averaged iterates to a scaled sum of Gaussians in both linear and nonlinear SA problems.
arXiv Detail & Related papers (2024-10-19T10:27:26Z) - Statistical Inference in Tensor Completion: Optimal Uncertainty Quantification and Statistical-to-Computational Gaps [7.174572371800217]
This paper presents a simple yet efficient method for statistical inference of tensor linear forms using incomplete and noisy observations.
It is suitable for various statistical inference tasks, including constructing confidence intervals, inference under heteroskedastic and sub-exponential noise, and simultaneous testing.
arXiv Detail & Related papers (2024-10-15T03:09:52Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Semiparametric Efficient Inference in Adaptive Experiments [29.43493007296859]
We consider the problem of efficient inference of the Average Treatment Effect in a sequential experiment where the policy governing the assignment of subjects to treatment or control can change over time.
We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability Weighted estimator, which is semi efficient, under weaker assumptions than those previously made in the literature.
We then consider sequential inference setting, deriving both propensity and nonasymptotic confidence sequences that are considerably tighter than previous methods.
arXiv Detail & Related papers (2023-11-30T06:25:06Z) - A lower confidence sequence for the changing mean of non-negative right
heavy-tailed observations with bounded mean [9.289846887298854]
A confidence sequence produces an adapted sequence of sets for a predictable parameter sequence with a time-parametric coverage guarantee.
This work constructs a non-asymptotic lower CS for the running average conditional expectation whose slack converges to zero.
arXiv Detail & Related papers (2022-10-20T09:50:05Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Statistical Properties of the Entropy from Ordinal Patterns [55.551675080361335]
Knowing the joint distribution of the pair Entropy-Statistical Complexity for a large class of time series models would allow statistical tests that are unavailable to date.
We characterize the distribution of the empirical Shannon's Entropy for any model under which the true normalized Entropy is neither zero nor one.
We present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon's Entropy.
arXiv Detail & Related papers (2022-09-15T23:55:58Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Asymptotics of the Empirical Bootstrap Method Beyond Asymptotic
Normality [25.402400996745058]
We show that the limiting distribution of the empirical bootstrap estimator is consistent under stability conditions.
We propose three alternative ways to use the bootstrap method to build confidence intervals with coverage guarantees.
arXiv Detail & Related papers (2020-11-23T07:14:30Z) - Uncertainty quantification for nonconvex tensor completion: Confidence
intervals, heteroscedasticity and optimality [92.35257908210316]
We study the problem of estimating a low-rank tensor given incomplete and corrupted observations.
We find that it attains unimprovable rates $ell-2$ accuracy.
arXiv Detail & Related papers (2020-06-15T17:47:13Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.