Semiparametric Efficient Inference in Adaptive Experiments
- URL: http://arxiv.org/abs/2311.18274v3
- Date: Mon, 4 Mar 2024 15:08:26 GMT
- Title: Semiparametric Efficient Inference in Adaptive Experiments
- Authors: Thomas Cook, Alan Mishler, Aaditya Ramdas
- Abstract summary: We consider the problem of efficient inference of the Average Treatment Effect in a sequential experiment where the policy governing the assignment of subjects to treatment or control can change over time.
We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability Weighted estimator, which is semi efficient, under weaker assumptions than those previously made in the literature.
We then consider sequential inference setting, deriving both propensity and nonasymptotic confidence sequences that are considerably tighter than previous methods.
- Score: 29.43493007296859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of efficient inference of the Average Treatment
Effect in a sequential experiment where the policy governing the assignment of
subjects to treatment or control can change over time. We first provide a
central limit theorem for the Adaptive Augmented Inverse-Probability Weighted
estimator, which is semiparametric efficient, under weaker assumptions than
those previously made in the literature. This central limit theorem enables
efficient inference at fixed sample sizes. We then consider a sequential
inference setting, deriving both asymptotic and nonasymptotic confidence
sequences that are considerably tighter than previous methods. These
anytime-valid methods enable inference under data-dependent stopping times
(sample sizes). Additionally, we use propensity score truncation techniques
from the recent off-policy estimation literature to reduce the finite sample
variance of our estimator without affecting the asymptotic variance. Empirical
results demonstrate that our methods yield narrower confidence sequences than
those previously developed in the literature while maintaining time-uniform
error control.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - STATE: A Robust ATE Estimator of Heavy-Tailed Metrics for Variance Reduction in Online Controlled Experiments [22.32661807469984]
We develop a novel framework that integrates the Student's t-distribution with machine learning tools to fit heavy-tailed metrics.
By adopting a variational EM method to optimize the loglikehood function, we can infer a robust solution that greatly eliminates the negative impact of outliers.
Both simulations on synthetic data and long-term empirical results on Meituan experiment platform demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-23T09:35:59Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Double Robust Bayesian Inference on Average Treatment Effects [2.458652618559425]
We propose a double robust Bayesian inference procedure on the average treatment effect (ATE) under unconfoundedness.
For our new Bayesian approach, we first adjust the prior distributions of the conditional mean functions, and then correct the posterior distribution of the resulting ATE.
arXiv Detail & Related papers (2022-11-29T15:32:25Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC) measures the average performance of a binary classifier.
Most of the existing methods could only optimize PAUC approximately, leading to inevitable biases that are not controllable.
We present a simpler reformulation of the PAUC problem via distributional robust optimization AUC.
arXiv Detail & Related papers (2022-10-08T08:26:22Z) - A New Central Limit Theorem for the Augmented IPW Estimator: Variance
Inflation, Cross-Fit Covariance and Beyond [0.9172870611255595]
Cross-fit inverse probability weighting (AIPW) with cross-fitting is a popular choice in practice.
We study this cross-fit AIPW estimator under well-specified outcome regression and propensity score models in a high-dimensional regime.
Our work utilizes a novel interplay between three distinct tools--approximate message passing theory, the theory of deterministic equivalents, and the leave-one-out approach.
arXiv Detail & Related papers (2022-05-20T14:17:53Z) - Counterfactual inference for sequential experiments [17.817769460838665]
We consider after-study statistical inference for sequentially designed experiments wherein multiple units are assigned treatments for multiple time points.
Our goal is to provide inference guarantees for the counterfactual mean at the smallest possible scale.
We illustrate our theory via several simulations and a case study involving data from a mobile health clinical trial HeartSteps.
arXiv Detail & Related papers (2022-02-14T17:24:27Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Time-uniform central limit theory and asymptotic confidence sequences [34.00292366598841]
Confidence sequences (CS) provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data.
CSs are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of confidence intervals.
Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees.
arXiv Detail & Related papers (2021-03-11T05:45:35Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.