論文の概要: PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation
- arxiv url: http://arxiv.org/abs/2103.06564v1
- Date: Thu, 11 Mar 2021 09:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 03:46:19.923359
- Title: PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation
- Title(参考訳): ポイントフロー:空中画像セグメンテーションのためのポイントを流れる意味論
- Authors: Xiangtai Li, Hao He, Xia Li, Duo Li, Guangliang Cheng, Jianping Shi,
Lubin Weng, Yunhai Tong, Zhouchen Lin
- Abstract要約: 本論文では,FPN(Feature Pyramid Network)フレームワークに基づく点親和性伝播モジュールであるPointFlowを提案する。
密接な親和性学習ではなく、隣接する特徴間の選択された点にスパース親和性マップを生成する。
3つの異なる空中セグメンテーションデータセットの実験結果から,提案手法は最先端の汎用セグメンテーション法よりも効率的かつ効率的であることが示唆された。
- 参考スコア(独自算出の注目度): 96.76882806139251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aerial Image Segmentation is a particular semantic segmentation problem and
has several challenging characteristics that general semantic segmentation does
not have. There are two critical issues: The one is an extremely
foreground-background imbalanced distribution, and the other is multiple small
objects along with the complex background. Such problems make the recent dense
affinity context modeling perform poorly even compared with baselines due to
over-introduced background context. To handle these problems, we propose a
point-wise affinity propagation module based on the Feature Pyramid Network
(FPN) framework, named PointFlow. Rather than dense affinity learning, a sparse
affinity map is generated upon selected points between the adjacent features,
which reduces the noise introduced by the background while keeping efficiency.
In particular, we design a dual point matcher to select points from the salient
area and object boundaries, respectively. Experimental results on three
different aerial segmentation datasets suggest that the proposed method is more
effective and efficient than state-of-the-art general semantic segmentation
methods. Especially, our methods achieve the best speed and accuracy trade-off
on three aerial benchmarks. Further experiments on three general semantic
segmentation datasets prove the generality of our method. Code will be provided
in (https: //github.com/lxtGH/PFSegNets).
- Abstract(参考訳): Aerial Image Segmentationは特定のセマンティックセグメンテーションの問題であり、一般的なセマンティックセグメンテーションが持たないいくつかの困難な特徴を持っている。
1つは極めて前景背景の不均衡な分布であり、もう1つは複雑な背景と共に複数の小さなオブジェクトである。
このような問題により、最近の密接な親和性コンテキストモデリングは、過剰な背景コンテキストによるベースラインと比較しても性能が劣る。
そこで本研究では,FPN(Feature Pyramid Network)フレームワークに基づくポイントアフィニティ伝播モジュールであるPointFlowを提案する。
密接な親和性学習ではなく、隣接する特徴間の選択点にスパース親和性マップが生成され、効率を保ちながら背景から生じるノイズを低減する。
特に、液状領域とオブジェクトの境界からそれぞれポイントを選択するために、デュアルポイントマッチャーを設計します。
3つの異なる空中セグメンテーションデータセットの実験結果から,提案手法は最先端の汎用セグメンテーション法よりも効率的かつ効率的であることが示唆された。
特に,提案手法は3つのベンチマークにおいて,最高速度と精度のトレードオフを達成している。
3つの一般的なセマンティックセグメンテーションデータセットのさらなる実験は、我々の方法の一般性を証明する。
コードはhttps: //github.com/lxtGH/PFSegNetsで提供される。
関連論文リスト
- PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - Robust 3D Scene Segmentation through Hierarchical and Learnable
Part-Fusion [9.275156524109438]
3Dセマンティックセグメンテーションは、自律運転、ロボット工学、AR/VRといったいくつかのシーン理解アプリケーションのための基本的なビルディングブロックである。
従来の手法では、階層的で反復的な手法を用いて意味や事例情報を融合するが、文脈融合における学習性は欠如している。
本稿では,セグメンテーション・フュージョン(Seegment-Fusion)について述べる。
論文 参考訳(メタデータ) (2021-11-16T13:14:47Z) - SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation [111.61261419566908]
ディープニューラルネットワーク(DNN)は通常、閉集合のセマンティッククラスで訓練される。
未発見のオブジェクトを扱うには不備だ。
このような物体の検出と局在化は、自動運転の認識などの安全クリティカルなアプリケーションに不可欠です。
論文 参考訳(メタデータ) (2021-04-30T07:58:19Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
本稿では,意味的セグメンテーションにおける教師なしドメイン適応(UDA)の問題に対処する。
ソースドメインとターゲットドメインが不変なセマンティック構造を持つという事実に触発され、ドメイン間におけるそのような不変性を活用することを提案する。
親和性空間適応戦略として,親和性空間の洗浄と親和性空間アライメントという2つの方法を開発した。
論文 参考訳(メタデータ) (2020-09-26T10:28:11Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
既存のセグメンテーションアプローチは、グローバルコンテキストをモデル化することでオブジェクトの内部の一貫性を改善すること、あるいはマルチスケールの特徴融合によって境界に沿ったオブジェクトの詳細を洗練することを目的としている。
本稿では,セマンティックセグメンテーションのための新しいパラダイムを提案する。
我々の洞察は、セマンティックセグメンテーションの魅力ある性能には、画像の高頻度と低頻度に対応するオブジェクトのテキストボディとテキストエッジを具体的にモデル化する必要があるということである。
さまざまなベースラインやバックボーンネットワークを備えた提案したフレームワークが,オブジェクト内部の一貫性とオブジェクト境界を向上させることを示す。
論文 参考訳(メタデータ) (2020-07-20T12:11:22Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
本稿では,新しい注意型マルチプロトタイプトランスダクティブ・ショットポイント・クラウドセマンティックセマンティック・セマンティクス法を提案する。
提案手法は,雲のセマンティックセマンティックセグメンテーション設定の違いによるベースラインに比べて,顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2020-06-22T08:05:25Z) - Instance segmentation of buildings using keypoints [26.220921532554136]
本稿では,高分解能リモートセンシング画像におけるセグメンテーションを構築するための新しいインスタンスセグメンテーションネットワークを提案する。
検出されたキーポイントはその後、建物のセマンティック境界である閉ポリゴンとして再構成される。
我々のネットワークは、幾何学的詳細をよく保存できるボトムアップのインスタンスセグメンテーション手法である。
論文 参考訳(メタデータ) (2020-06-06T13:11:37Z) - BANet: Bidirectional Aggregation Network with Occlusion Handling for
Panoptic Segmentation [30.008473359758632]
Panoptic segmentationは、フォアグラウンドインスタンスのインスタンスセグメンテーションと、バックグラウンドオブジェクトのセマンティックセグメンテーションを同時に行うことを目的としている。
本稿では,双方向学習パイプラインに基づく新しい深部汎視的セグメンテーション手法を提案する。
COCOパン光学ベンチマーク実験の結果,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-03-31T08:57:14Z) - The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance
Segmentation [15.768804877756384]
本稿では,共同グラフ分割とラベリングのためのグリーディアルゴリズムを提案する。
アルゴリズムの効率のため、イメージをスーパーピクセルにオーバーセグメンテーションすることなく、直接ピクセル上で操作することができる。
論文 参考訳(メタデータ) (2019-12-29T19:48:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。