Non-Asymptotic Performance Guarantees for Neural Estimation of
$\mathsf{f}$-Divergences
- URL: http://arxiv.org/abs/2103.06923v1
- Date: Thu, 11 Mar 2021 19:47:30 GMT
- Title: Non-Asymptotic Performance Guarantees for Neural Estimation of
$\mathsf{f}$-Divergences
- Authors: Sreejith Sreekumar, Zhengxin Zhang, Ziv Goldfeld
- Abstract summary: Statistical distances quantify the dissimilarity between probability distributions.
A modern method for estimating such distances from data relies on parametrizing a variational form by a neural network (NN) and optimizing it.
This paper explores this tradeoff by means of non-asymptotic error bounds, focusing on three popular choices of SDs.
- Score: 22.496696555768846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical distances (SDs), which quantify the dissimilarity between
probability distributions, are central to machine learning and statistics. A
modern method for estimating such distances from data relies on parametrizing a
variational form by a neural network (NN) and optimizing it. These estimators
are abundantly used in practice, but corresponding performance guarantees are
partial and call for further exploration. In particular, there seems to be a
fundamental tradeoff between the two sources of error involved: approximation
and estimation. While the former needs the NN class to be rich and expressive,
the latter relies on controlling complexity. This paper explores this tradeoff
by means of non-asymptotic error bounds, focusing on three popular choices of
SDs -- Kullback-Leibler divergence, chi-squared divergence, and squared
Hellinger distance. Our analysis relies on non-asymptotic function
approximation theorems and tools from empirical process theory. Numerical
results validating the theory are also provided.
Related papers
- Distribution learning via neural differential equations: a nonparametric
statistical perspective [1.4436965372953483]
This work establishes the first general statistical convergence analysis for distribution learning via ODE models trained through likelihood transformations.
We show that the latter can be quantified via the $C1$-metric entropy of the class $mathcal F$.
We then apply this general framework to the setting of $Ck$-smooth target densities, and establish nearly minimax-optimal convergence rates for two relevant velocity field classes $mathcal F$: $Ck$ functions and neural networks.
arXiv Detail & Related papers (2023-09-03T00:21:37Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Online Bootstrap Inference with Nonconvex Stochastic Gradient Descent
Estimator [0.0]
In this paper, we investigate the theoretical properties of gradient descent (SGD) for statistical inference in the context of convex problems.
We propose two coferential procedures which may contain multiple error minima.
arXiv Detail & Related papers (2023-06-03T22:08:10Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Neural Estimation of Statistical Divergences [24.78742908726579]
A modern method for estimating statistical divergences relies on parametrizing an empirical variational form by a neural network (NN)
In particular, there is a fundamental tradeoff between the two sources of error involved: approximation and empirical estimation.
We show that neural estimators with a slightly different NN growth-rate are near minimax rate-optimal, achieving the parametric convergence rate up to logarithmic factors.
arXiv Detail & Related papers (2021-10-07T17:42:44Z) - Advantage of Deep Neural Networks for Estimating Functions with
Singularity on Hypersurfaces [23.21591478556582]
We develop a minimax rate analysis to describe the reason that deep neural networks (DNNs) perform better than other standard methods.
This study tries to fill this gap by considering the estimation for a class of non-smooth functions that have singularities on hypersurfaces.
arXiv Detail & Related papers (2020-11-04T12:51:14Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
We propose a new single-model based approach to quantify uncertainty in deep neural networks.
We use a mean-field approximation formula to compute an analytically intractable integral.
Empirically, the proposed approach performs competitively when compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-06-13T07:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.