Heat transport in a two-level system driven by a time-dependent
temperature
- URL: http://arxiv.org/abs/2103.07114v2
- Date: Wed, 24 Nov 2021 15:40:52 GMT
- Title: Heat transport in a two-level system driven by a time-dependent
temperature
- Authors: Pedro Portugal, Christian Flindt, Nicola Lo Gullo
- Abstract summary: thermotronics aims to develop thermal circuits that operate with temperature biases and heat currents.
Findings are important for efforts to design non-linear thermal components that operate with more than one diode.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of thermotronics aims to develop thermal circuits that operate with
temperature biases and heat currents just as how electronic circuits are based
on voltages and electric currents. Here, we investigate a thermal half-wave
rectifier based on a quantum two-level system (a qubit) that is driven by a
periodically modulated temperature difference across it. To this end, we
present a non-equilibrium Green's function technique, which we extend to the
time domain to account for the time-dependent temperature in one of two thermal
reservoirs connected to the qubit. We find that the qubit acts a thermal diode
in parallel with a thermal capacitor, whose capacitance is controlled by the
coupling to the reservoirs. These findings are important for the efforts to
design non-linear thermal components such as heat rectifiers and multipliers
that operate with more than one diode.
Related papers
- All-thermal reversal of heat currents using qutrits [0.0]
We propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system.
This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system.
arXiv Detail & Related papers (2024-03-17T09:54:06Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Quantum Control of Heat Current [0.0]
We investigate the local thermal transport in a quantum trimer of harmonic oscillators connected to two thermal baths.
The proposed quantum system may find application in quantum thermal and memory devices by leveraging the heat current.
arXiv Detail & Related papers (2023-06-28T05:42:14Z) - Cyclic Superconducting Quantum Refrigerators Using Guided Fluxon
Propagation [0.0]
We propose cyclic quantum refrigeration in solid-state, employing a gas of magnetic field vortices in a type-II superconductor as the cooling agent.
Our cooling principle can offer significant cooling for on-chip micro-refrigeration purposes, by locally cooling below the base temperatures achievable in a conventional dilution refrigerator.
arXiv Detail & Related papers (2022-12-01T04:52:30Z) - Characterizing the performance of heat rectifiers [17.77602155559703]
We quantify the performance of a heat by mapping out the trade-off between heat currents and rectification.
Our results demonstrate the superiority of two strongly-interacting qubits for heat rectification.
arXiv Detail & Related papers (2022-08-23T08:48:05Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Thermal rectification and negative differential thermal conductivity
based on a parallel-coupled double quantum-dot [10.266211487293651]
We demonstrate the effects of thermal rectification and negative differential thermal conductance (NDTC) exist in this system.
We find that this system can achieve a high thermal rectification ratio and NDTC when the asymmetry factor of the system is enhanced.
arXiv Detail & Related papers (2020-07-09T11:59:56Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Reservoir engineering with arbitrary temperatures for spin systems and
quantum thermal machine with maximum efficiency [50.591267188664666]
Reservoir engineering is an important tool for quantum information science and quantum thermodynamics.
We employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system.
arXiv Detail & Related papers (2020-01-28T00:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.