Quantum Control of Heat Current
- URL: http://arxiv.org/abs/2306.15937v2
- Date: Thu, 7 Mar 2024 04:55:25 GMT
- Title: Quantum Control of Heat Current
- Authors: Gobinda Chakraborty, Subhadeep Chakraborty, Tanmoy Basu, and Manas
Mukherjee
- Abstract summary: We investigate the local thermal transport in a quantum trimer of harmonic oscillators connected to two thermal baths.
The proposed quantum system may find application in quantum thermal and memory devices by leveraging the heat current.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the local thermal transport in a quantum trimer of harmonic
oscillators connected to two thermal baths. The coupling between them are
augmented by complex phases which leads to the quantum control of the local
atypical heat current between two oscillators connected to the same heat bath.
Our study reveals that this atypical heat current is a consequence of the
lifting of the dark mode and the modulation of this current is due to variation
in system bath correlations. The proposed quantum system may find application
in quantum thermal and memory devices by leveraging the heat current.
Related papers
- All-thermal reversal of heat currents using qutrits [0.0]
We propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system.
This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system.
arXiv Detail & Related papers (2024-03-17T09:54:06Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Mixing thermal coherent states for precision and range enhancement in quantum thermometry [0.0]
We propose the realization of a special mixture of thermal coherent states by coupling a thermal bath with a two-level system that is longitudinally coupled to a resonator.
We find that the state of the resonator is a special mixture of two oppositely displaced thermal coherent states, whereas the two-level system remains thermal.
arXiv Detail & Related papers (2023-06-07T12:04:55Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum transient heat transport in the hyper-parametric oscillator [0.0]
We explore nonequilibrium quantum heat transport in nonlinear bosonic systems in the presence of a non-Kerr-type interaction.
Our findings may help in the manipulation of quantum states using the system's interactions to induce cooling.
arXiv Detail & Related papers (2020-11-05T05:05:36Z) - Heat transport in overdamped quantum systems [0.0]
We show how to evaluate both contributions by taking advantage of the time scale separation associated with the overdamped regime.
We find that non-trivial quantum corrections survive even when the temperatures are high compared to the frequency scale relevant for the overdamped dynamics of the system.
arXiv Detail & Related papers (2020-09-02T08:55:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.