論文の概要: Improving Translation Robustness with Visual Cues and Error Correction
- arxiv url: http://arxiv.org/abs/2103.07352v1
- Date: Fri, 12 Mar 2021 15:31:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 13:25:42.585407
- Title: Improving Translation Robustness with Visual Cues and Error Correction
- Title(参考訳): 視覚手がかりと誤り訂正による翻訳ロバスト性の向上
- Authors: Zhenhao Li, Marek Rei, Lucia Specia
- Abstract要約: ノイズの多いテキストに対する翻訳の堅牢性を改善するビジュアルコンテキストのアイデアを紹介します。
また,誤り訂正を補助タスクとして扱うことで,新しい誤り訂正訓練手法を提案する。
- 参考スコア(独自算出の注目度): 58.97421756225425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Machine Translation models are brittle to input noise. Current
robustness techniques mostly adapt models to existing noisy texts, but these
models generally fail when faced with unseen noise and their performance
degrades on clean texts. In this paper, we introduce the idea of visual context
to improve translation robustness against noisy texts. In addition, we propose
a novel error correction training regime by treating error correction as an
auxiliary task to further improve robustness. Experiments on English-French and
English-German translation show that both multimodality and error correction
training are beneficial for model robustness to known and new types of errors,
while keeping the quality on clean texts.
- Abstract(参考訳): ニューラルマシン翻訳モデルは入力ノイズに弱いです。
現在の堅牢性技術は、主に既存のノイズの多いテキストにモデルを適用しますが、これらのモデルは一般的に、見えないノイズに直面して、クリーンテキストのパフォーマンスが低下すると失敗します。
本稿では,ノイズの多いテキストに対する翻訳堅牢性を改善するための視覚的文脈の概念を紹介する。
さらに,誤り訂正を補助タスクとして扱うことで,ロバスト性をさらに向上させる新しい誤り訂正訓練手法を提案する。
英語とフランス語とドイツ語の翻訳実験では、マルチモーダリティと誤り訂正トレーニングの両方が、既知の新しいタイプのエラーに対するモデル堅牢性に有益であり、クリーンテキストの品質を維持している。
関連論文リスト
- Advancing Translation Preference Modeling with RLHF: A Step Towards
Cost-Effective Solution [57.42593422091653]
人間のフィードバックによる強化学習の活用による翻訳品質の向上について検討する。
強力な言語能力を持つ報酬モデルは、翻訳品質の微妙な違いをより敏感に学習することができる。
論文 参考訳(メタデータ) (2024-02-18T09:51:49Z) - Error Norm Truncation: Robust Training in the Presence of Data Noise for Text Generation Models [39.37532848489779]
本稿では,ノイズの多いデータをトラストする標準学習目標に対する頑健な強化手法であるError Norm Truncation (ENT)を提案する。
ENTは,従来のソフト・ハード・トランケーション法よりも生成品質の向上を図っている。
論文 参考訳(メタデータ) (2023-10-02T01:30:27Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - An Error-Guided Correction Model for Chinese Spelling Error Correction [13.56600372085612]
中国語の綴り訂正を改善するための誤り誘導補正モデル(EGCM)を提案する。
我々のモデルは、最先端のアプローチに対する優れた性能を顕著なマージンで達成する。
論文 参考訳(メタデータ) (2023-01-16T09:27:45Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - Empirical Error Modeling Improves Robustness of Noisy Neural Sequence
Labeling [26.27504889360246]
本稿では,誤りのないテキストから誤文への変換を訓練したシーケンス・ツー・シーケンスモデルを用いた経験的誤り生成手法を提案する。
テキスト入力が不完全である場合にさらに悪化するデータ空間の問題に対処するため,ノイズの多い言語モデルによる埋め込みを学習した。
提案手法は, 誤り系列ラベリングデータセットのベースラインノイズ発生と誤り訂正技術より優れていた。
論文 参考訳(メタデータ) (2021-05-25T12:15:45Z) - Neural Text Generation with Artificial Negative Examples [7.187858820534111]
強化学習フレームワークでテキスト生成モデルを訓練することにより,任意のタイプのエラーを抑制することを提案する。
我々は、目標となるタイプのエラーを含む参照と文を識別できる訓練可能な報酬関数を使用する。
実験の結果,生成誤差の抑制と2つの機械翻訳と2つの画像キャプションタスクの大幅な改善を達成できることが示された。
論文 参考訳(メタデータ) (2020-12-28T07:25:10Z) - Robust Neural Machine Translation: Modeling Orthographic and
Interpunctual Variation [3.3194866396158]
そこで本研究では,10種類の逆例を生成するための簡易な生成ノイズモデルを提案する。
ノイズの多いデータでテストすると、敵の例を使って訓練されたシステムは、クリーンなデータを翻訳するのと同様に、ほぼ同等に機能することを示す。
論文 参考訳(メタデータ) (2020-09-11T14:12:54Z) - Robust Unsupervised Neural Machine Translation with Adversarial
Denoising Training [66.39561682517741]
unsupervised neural machine translation (UNMT) は機械翻訳コミュニティに大きな関心を集めている。
UNMTの主な利点は、必要な大規模な訓練用テキストの簡単な収集にある。
本稿では,UNMT ベースのシステムのロバスト性を改善するため,まずノイズを考慮に入れた。
論文 参考訳(メタデータ) (2020-02-28T05:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。