Information Maximization Clustering via Multi-View Self-Labelling
- URL: http://arxiv.org/abs/2103.07368v1
- Date: Fri, 12 Mar 2021 16:04:41 GMT
- Title: Information Maximization Clustering via Multi-View Self-Labelling
- Authors: Foivos Ntelemis, Yaochu Jin, Spencer A. Thomas
- Abstract summary: We propose a novel single-phase clustering method that simultaneously learns meaningful representations and assigns the corresponding annotations.
This is achieved by integrating a discrete representation into the self-supervised paradigm through a net.
Our empirical results show that the proposed framework outperforms state-of-the-art techniques with the average accuracy of 89.1% and 49.0%, respectively.
- Score: 9.947717243638289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image clustering is a particularly challenging computer vision task, which
aims to generate annotations without human supervision. Recent advances focus
on the use of self-supervised learning strategies in image clustering, by first
learning valuable semantics and then clustering the image representations.
These multiple-phase algorithms, however, increase the computational time and
their final performance is reliant on the first stage. By extending the
self-supervised approach, we propose a novel single-phase clustering method
that simultaneously learns meaningful representations and assigns the
corresponding annotations. This is achieved by integrating a discrete
representation into the self-supervised paradigm through a classifier net.
Specifically, the proposed clustering objective employs mutual information, and
maximizes the dependency between the integrated discrete representation and a
discrete probability distribution. The discrete probability distribution is
derived though the self-supervised process by comparing the learnt latent
representation with a set of trainable prototypes. To enhance the learning
performance of the classifier, we jointly apply the mutual information across
multi-crop views. Our empirical results show that the proposed framework
outperforms state-of-the-art techniques with the average accuracy of 89.1% and
49.0%, respectively, on CIFAR-10 and CIFAR-100/20 datasets. Finally, the
proposed method also demonstrates attractive robustness to parameter settings,
making it ready to be applicable to other datasets.
Related papers
- Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
We propose discriminative anchor learning for multi-view clustering (DALMC)
We learn discriminative view-specific feature representations according to the original dataset.
We build anchors from different views based on these representations, which increase the quality of the shared anchor graph.
arXiv Detail & Related papers (2024-09-25T13:11:17Z) - Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization [4.39139858370436]
This paper introduces an image clustering algorithm based on self-supervised pretrained models and latent feature distribution optimization.
Our approach outperforms the latest clustering algorithms and achieves state-of-the-art clustering results.
arXiv Detail & Related papers (2024-08-04T04:08:21Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
Self-supervised learning models have been shown to learn rich visual representations without requiring human annotations.
We propose a conceptually simple yet empirically powerful approach to turn clustering-based self-supervised methods into semi-supervised learners.
arXiv Detail & Related papers (2023-06-13T01:09:18Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Multi-Pretext Attention Network for Few-shot Learning with
Self-supervision [37.6064643502453]
We propose a novel augmentation-free method for self-supervised learning, which does not rely on any auxiliary sample.
Besides, we propose Multi-pretext Attention Network (MAN), which exploits a specific attention mechanism to combine the traditional augmentation-relied methods and our GC.
We evaluate our MAN extensively on miniImageNet and tieredImageNet datasets and the results demonstrate that the proposed method outperforms the state-of-the-art (SOTA) relevant methods.
arXiv Detail & Related papers (2021-03-10T10:48:37Z) - Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot
Learning [21.89909688056478]
We propose a new two-level joint idea to augment the generative network with an inference network during training.
This provides strong cross-modal interaction for effective transfer of knowledge between visual and semantic domains.
We evaluate our approach on four benchmark datasets against several state-of-the-art methods, and show its performance.
arXiv Detail & Related papers (2020-07-15T15:34:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.