論文の概要: Lightweight Selective Disclosure for Verifiable Documents on Blockchain
- arxiv url: http://arxiv.org/abs/2103.07655v2
- Date: Sat, 9 Oct 2021 08:22:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-08 06:30:50.771722
- Title: Lightweight Selective Disclosure for Verifiable Documents on Blockchain
- Title(参考訳): ブロックチェーンの検証可能なドキュメントに対する軽量選択開示
- Authors: Kenji Saito, Satoki Watanabe
- Abstract要約: 暗号ハッシュ関数とソルトを用いて任意の要素を隠蔽できる文書用XMLフォーマットを提案する。
ドキュメントは、Merkleツリーとして複数の構造を表現し、そのルーツをブロックチェーンに格納することで、効率的に存在することが証明できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To achieve lightweight selective disclosure for protecting privacy of
document holders, we propose an XML format for documents that can hide
arbitrary elements using a cryptographic hash function and salts, which allows
to be partially digitally signed and efficiently verified, as well as a JSON
format that can be converted to such XML. The documents can be efficiently
proven to exist by representing multiple such structures as a Merkle tree and
storing its root in blockchain.
We show that our proposal has advantages over known methods that represent
the document itself as a Merkle tree and partially hide it.
- Abstract(参考訳): ドキュメントホルダのプライバシを保護するための軽量な選択的開示を実現するために,暗号化ハッシュ関数とソルトを使って任意の要素を隠蔽できる文書用のxmlフォーマットを提案する。
ドキュメントは、Merkleツリーのような複数の構造を表現し、そのルーツをブロックチェーンに格納することで、効率的に存在することが証明できる。
我々の提案は、文書自体をメルクルツリーとして表現し、部分的に隠している既知のメソッドよりも利点があることを示します。
関連論文リスト
- Contextual Document Embeddings [77.22328616983417]
本稿では,コンテキスト化された文書埋め込みのための2つの補完手法を提案する。
第一に、文書近傍を明示的にバッチ内コンテキスト損失に組み込む別のコントラスト学習目標である。
第二に、隣接する文書情報をエンコードされた表現に明示的にエンコードする新しいコンテキストアーキテクチャ。
論文 参考訳(メタデータ) (2024-10-03T14:33:34Z) - STORE: Streamlining Semantic Tokenization and Generative Recommendation with A Single LLM [59.08493154172207]
本稿では,意味的トークン化と生成的レコメンデーションプロセスを合理化する統合フレームワークを提案する。
我々は,意味的トークン化をテキスト・ツー・ケントタスクとして定式化し,生成的推薦をトークン・ツー・ケントタスクとして,トークン・ツー・ケント・コンストラクションタスクとテキスト・ツー・ケント補助タスクで補足する。
これらのタスクはすべて生成的な方法でフレーム化され、単一の大規模言語モデル(LLM)バックボーンを使用してトレーニングされる。
論文 参考訳(メタデータ) (2024-09-11T13:49:48Z) - Selective disclosure of claims from multiple digital credentials [0.0]
本稿では,MerkleハッシュツリーとBoneh-Lynn-Shachamシグネチャを組み合わせた選択的開示手法を提案する。
選択的な開示に加えて、このアプローチを用いて複数の発行者が署名した証明書の発行を可能にする。
論文 参考訳(メタデータ) (2024-02-23T17:20:28Z) - DocumentNet: Bridging the Data Gap in Document Pre-Training [78.01647768018485]
本稿では,Webから大規模かつ弱いラベル付きデータを収集し,VDERモデルの学習に役立てる手法を提案する。
収集されたデータセットはDocumentNetと呼ばれ、特定のドキュメントタイプやエンティティセットに依存しない。
広く採用されているVDERタスクの実験は、DocumentNetを事前トレーニングに組み込んだ場合、大幅に改善されている。
論文 参考訳(メタデータ) (2023-06-15T08:21:15Z) - Learning Diverse Document Representations with Deep Query Interactions
for Dense Retrieval [79.37614949970013]
そこで本研究では,問合せの深い文書表現を学習する高密度検索モデルを提案する。
本モデルでは,各文書に生成した擬似クエリをエンコードして,クエリインフォームド・マルチビュー文書表現を得る。
論文 参考訳(メタデータ) (2022-08-08T16:00:55Z) - Open Set Classification of Untranscribed Handwritten Documents [56.0167902098419]
重要な写本の膨大な量のデジタルページイメージが世界中のアーカイブに保存されている。
ドキュメントのクラスや型付け'はおそらくメタデータに含まれる最も重要なタグです。
技術的問題は文書の自動分類の1つであり、それぞれが書き起こされていない手書きのテキスト画像からなる。
論文 参考訳(メタデータ) (2022-06-20T20:43:50Z) - Synthetic Document Generator for Annotation-free Layout Recognition [15.657295650492948]
本稿では,空間的位置,範囲,レイアウト要素のカテゴリを示すラベル付きリアル文書を自動生成する合成文書生成装置について述べる。
合成文書上で純粋に訓練された深層レイアウト検出モデルが,実文書を用いたモデルの性能と一致することを実証的に示す。
論文 参考訳(メタデータ) (2021-11-11T01:58:44Z) - SenTag: a Web-based Tool for Semantic Annotation of Textual Documents [4.910379177401659]
SenTagはテキスト文書のセマンティックアノテーションに焦点を当てたウェブベースのツールである。
アプリケーションの主な目標は、タグ付けプロセスの容易化と、出力ドキュメントのエラーの削減と回避である。
また、テキストコーパスに係わるアノテータの合意のレベルを評価することもできる。
論文 参考訳(メタデータ) (2021-09-16T08:39:33Z) - The Law of Large Documents: Understanding the Structure of Legal
Contracts Using Visual Cues [0.7425558351422133]
コンピュータビジョン手法を用いて得られた視覚的手がかりが文書理解タスクの精度に与える影響を計測する。
構造メタデータに基づく文書のセグメンテーション手法は,4つの文書理解タスクにおいて,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-16T21:21:50Z) - docExtractor: An off-the-shelf historical document element extraction [18.828438308738495]
文献からテキストやイラストなどの視覚的要素を抽出する汎用的手法である docExtractor を提案する。
さまざまなデータセットにまたがるオフザシェルフシステムとして,高品質なパフォーマンスを提供することを実証する。
IlluHisDocと呼ばれる新しい公開データセットを導入し、歴史文書におけるイラストのセグメンテーションを詳細に評価する。
論文 参考訳(メタデータ) (2020-12-15T10:19:18Z) - DocBank: A Benchmark Dataset for Document Layout Analysis [114.81155155508083]
文書レイアウト解析のための詳細なトークンレベルのアノテーションを備えた500Kドキュメントページを含むベンチマークデータセットである textbfDocBank を提示する。
実験の結果,DocBankでトレーニングされたモデルは,さまざまなドキュメントのレイアウト情報を正確に認識することがわかった。
論文 参考訳(メタデータ) (2020-06-01T16:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。