Quantum information
- URL: http://arxiv.org/abs/2103.07712v2
- Date: Tue, 27 Apr 2021 21:08:58 GMT
- Title: Quantum information
- Authors: Ryszard Horodecki
- Abstract summary: This article reviews the extraordinary features of quantum information predicted by the quantum formalism.
The development of modern quantum technologies have opened new horizons in quantum physics that can potentially affect various areas of our live.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article reviews the extraordinary features of quantum information
predicted by the quantum formalism, which, combined with the development of
modern quantum technologies, have opened new horizons in quantum physics that
can potentially affect various areas of our live, leading to new technologies
such as quantum cybersecurity, quantum communication, quantum metrology, and
quantum computation.
Related papers
- Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - A Quick Guide to Quantum Communication [2.2525314592070402]
We take a neutral look at the role of quantum communication, presenting its importance for the forthcoming wireless.
We summarise the principles and basic mechanisms involved in quantum communication, including quantum entanglement, quantum superposition, and quantum teleportation.
arXiv Detail & Related papers (2024-02-24T04:00:37Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - The Physics of Quantum Information [0.0]
I review four intertwined themes encompassed by this topic: Quantum computer science, quantum hardware, quantum matter, and quantum gravity.
In the longer term, controlling highly complex quantum matter will open the door to profound scientific advances and powerful new technologies.
arXiv Detail & Related papers (2022-08-17T04:35:36Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - The Coming Decades of Quantum Simulation [0.0]
We focus on various shades of quantum simulation (Noisy Intermediate Scale Quantum, NISQ) devices, analogue and digital quantum simulators and quantum annealers.
There is a clear need and quest for such systems that, without necessarily simulating quantum dynamics of some physical systems, can generate massive, controllable, robust, entangled, and superposition states.
This will, in particular, allow the control of decoherence, enabling the use of these states for quantum communications.
arXiv Detail & Related papers (2022-04-19T14:02:32Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Machine Learning for Quantum Matter [0.0]
We review the recent development and adaptation of machine learning ideas for the purpose advancing research in quantum matter.
We discuss the outlook for future developments in areas at the intersection between machine learning and quantum many-body physics.
arXiv Detail & Related papers (2020-03-24T18:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.