R-GSN: The Relation-based Graph Similar Network for Heterogeneous Graph
- URL: http://arxiv.org/abs/2103.07877v1
- Date: Sun, 14 Mar 2021 09:25:36 GMT
- Title: R-GSN: The Relation-based Graph Similar Network for Heterogeneous Graph
- Authors: Xinliang Wu and Mengying Jiang and Guizhong Liu
- Abstract summary: This paper proposes the general heterogeneous message passing paradigm and designed R-GSN that does not need meta-path.
Experiments have shown that our R-GSN algorithm achieves the state-of-the-art performance on the ogbn-mag large scale heterogeneous graph dataset.
- Score: 5.2848965435713575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous graph is a kind of data structure widely existing in real life.
Nowadays, the research of graph neural network on heterogeneous graph has
become more and more popular. The existing heterogeneous graph neural network
algorithms mainly have two ideas, one is based on meta-path and the other is
not. The idea based on meta-path often requires a lot of manual preprocessing,
at the same time it is difficult to extend to large scale graphs. In this
paper, we proposed the general heterogeneous message passing paradigm and
designed R-GSN that does not need meta-path, which is much improved compared to
the baseline R-GCN. Experiments have shown that our R-GSN algorithm achieves
the state-of-the-art performance on the ogbn-mag large scale heterogeneous
graph dataset.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Heterogeneous Graph Tree Networks [8.50892442127182]
Heterogeneous graph neural networks (HGNNs) have attracted increasing research interest in recent three years.
One class is meta-path-based HGNNs which either require domain knowledge to handcraft meta-paths or consume huge amount of time and memory to automatically construct meta-paths.
We propose two models: Heterogeneous Graph Tree Convolutional Network (HetGTCN) and Heterogeneous Graph Tree Attention Network (HetGTAN)
arXiv Detail & Related papers (2022-09-01T17:22:01Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Simplified Graph Convolution with Heterophily [25.7577503312319]
We show that Simple Graph Convolution (SGC) is ineffective for heterophilous (i.e., non-homophilous) graphs.
We propose Adaptive Simple Graph Convolution (ASGC), which we show can adapt to both homophilous and heterophilous graph structure.
arXiv Detail & Related papers (2022-02-08T20:52:08Z) - Graph Transformer Networks: Learning Meta-path Graphs to Improve GNNs [20.85042364993559]
We propose Graph Transformer Networks (GTNs) that generate new graph structures and include useful connections for tasks.
Fast Graph Transformer Networks (FastGTNs) are 230x faster and use 100x less memory.
We extend graph transformations to the semantic proximity of nodes allowing non-local operations beyond meta-paths.
arXiv Detail & Related papers (2021-06-11T07:56:55Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
We propose Heterogeneous Similarity Graph Neural Network (HSGNN) to analyze EHRs with a novel heterogeneous GNN.
Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN.
The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction.
arXiv Detail & Related papers (2021-01-17T23:14:29Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Meta-path Free Semi-supervised Learning for Heterogeneous Networks [16.641434334366227]
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved superior performance in tasks such as node classification.
In this paper, we propose simple and effective graph neural networks for heterogeneous graph, excluding the use of meta-paths.
arXiv Detail & Related papers (2020-10-18T06:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.