Whole brain Probabilistic Generative Model toward Realizing Cognitive
Architecture for Developmental Robots
- URL: http://arxiv.org/abs/2103.08183v1
- Date: Mon, 15 Mar 2021 07:42:04 GMT
- Title: Whole brain Probabilistic Generative Model toward Realizing Cognitive
Architecture for Developmental Robots
- Authors: Tadahiro Taniguchi, Hiroshi Yamakawa, Takayuki Nagai, Kenji Doya,
Masamichi Sakagami, Masahiro Suzuki, Tomoaki Nakamura, Akira Taniguchi
- Abstract summary: Building a humanlike integrative artificial cognitive system, that is, an artificial general intelligence, is one of the goals in artificial intelligence and developmental robotics.
This paper describes the development of a cognitive architecture using probabilistic generative models (PGMs) to fully mirror the human cognitive system.
- Score: 8.941833998120904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building a humanlike integrative artificial cognitive system, that is, an
artificial general intelligence, is one of the goals in artificial intelligence
and developmental robotics. Furthermore, a computational model that enables an
artificial cognitive system to achieve cognitive development will be an
excellent reference for brain and cognitive science. This paper describes the
development of a cognitive architecture using probabilistic generative models
(PGMs) to fully mirror the human cognitive system. The integrative model is
called a whole-brain PGM (WB-PGM). It is both brain-inspired and PGMbased. In
this paper, the process of building the WB-PGM and learning from the human
brain to build cognitive architectures is described.
Related papers
- Brain-inspired AI Agent: The Way Towards AGI [5.867107330135988]
Researchers in brain-inspired AI seek inspiration from the operational mechanisms of the human brain, aiming to replicate its functional rules in intelligent models.
We propose the concept of a brain-inspired AI agent and analyze how to extract relatively feasible and agent-compatible cortical region functionalities.
Implementing these structures within an agent enables it to achieve basic cognitive intelligence akin to human capabilities.
arXiv Detail & Related papers (2024-12-12T02:15:48Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
We analyse the question of developing artificial consciousness from an evolutionary perspective.
We take the evolution of the human brain and its relation with consciousness as a reference model.
We propose to clearly specify what is common and what differs in AI conscious processing from full human conscious experience.
arXiv Detail & Related papers (2024-04-18T12:59:44Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods.
Despite the impressive advancements achieved by deep learning models, they still have shortcomings in abstract reasoning and causal understanding.
arXiv Detail & Related papers (2024-01-03T09:46:36Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - BIASeD: Bringing Irrationality into Automated System Design [12.754146668390828]
We claim that the future of human-machine collaboration will entail the development of AI systems that model, understand and possibly replicate human cognitive biases.
We categorize existing cognitive biases from the perspective of AI systems, identify three broad areas of interest and outline research directions for the design of AI systems that have a better understanding of our own biases.
arXiv Detail & Related papers (2022-10-01T02:52:38Z) - Intelligent problem-solving as integrated hierarchical reinforcement
learning [11.284287026711125]
Development of complex problem-solving behaviour in biological agents depends on hierarchical cognitive mechanisms.
We propose steps to integrate biologically inspired hierarchical mechanisms to enable advanced problem-solving skills in artificial agents.
We expect our results to guide the development of more sophisticated cognitively inspired hierarchical machine learning architectures.
arXiv Detail & Related papers (2022-08-18T09:28:03Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
This paper considers an evolutionary approach to creating a cognitive functionality.
We consider a cognitive architecture which ensures the evolution of the agent on the basis of Symbol Emergence Problem solution.
arXiv Detail & Related papers (2022-07-02T12:41:32Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
We present a new cognitive architecture that combines two neurobiologically plausible, computational models.
We aim to develop a cognitive architecture that has the power of modern machine learning techniques.
arXiv Detail & Related papers (2022-03-31T04:44:28Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - The whole brain architecture approach: Accelerating the development of
artificial general intelligence by referring to the brain [1.637145148171519]
It is difficult for an individual to design a software program that corresponds to the entire brain.
The whole-brain architecture approach divides the brain-inspired AGI development process into the task of designing the brain reference architecture.
This study proposes the Structure-constrained Interface Decomposition (SCID) method, which is a hypothesis-building method for creating a hypothetical component diagram.
arXiv Detail & Related papers (2021-03-06T04:58:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.