論文の概要: DHASP: Differentiable Hearing Aid Speech Processing
- arxiv url: http://arxiv.org/abs/2103.08569v1
- Date: Mon, 15 Mar 2021 17:34:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 15:57:38.289691
- Title: DHASP: Differentiable Hearing Aid Speech Processing
- Title(参考訳): DHASP:区別可能な補聴器音声処理
- Authors: Zehai Tu, Ning Ma, Jon Barker
- Abstract要約: 聴取者の聴力障害に対する適切な増幅は、良好な演奏に不可欠である。
本稿では,補聴器音声処理フレームワークの導入により,最適な適合度を求めるための代替手法を提案する。
このフレームワークは完全に差別化可能であり、効率的なデータ駆動最適化にバックプロパゲーションアルゴリズムを使用することができる。
最初の目的の実験では、ノイズのない音声増幅に有望な結果が示され、自動最適化されたプロセッサは、よく認識された補聴器処方薬の1つを上回る。
- 参考スコア(独自算出の注目度): 23.101074347473904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hearing aids are expected to improve speech intelligibility for listeners
with hearing impairment. An appropriate amplification fitting tuned for the
listener's hearing disability is critical for good performance. The
developments of most prescriptive fittings are based on data collected in
subjective listening experiments, which are usually expensive and
time-consuming. In this paper, we explore an alternative approach to finding
the optimal fitting by introducing a hearing aid speech processing framework,
in which the fitting is optimised in an automated way using an intelligibility
objective function based on the HASPI physiological auditory model. The
framework is fully differentiable, thus can employ the back-propagation
algorithm for efficient, data-driven optimisation. Our initial objective
experiments show promising results for noise-free speech amplification, where
the automatically optimised processors outperform one of the well recognised
hearing aid prescriptions.
- Abstract(参考訳): 補聴器は聴覚障害者の音声明瞭度を向上させることが期待されている。
聴き手の聴力に調整された適切な増幅具は、良好な演奏には不可欠である。
ほとんどの規範的なフィッティングの開発は、通常高価で時間を要する主観的な聴取実験で収集されたデータに基づいている。
本稿では,HASPI の生理的聴覚モデルに基づく知能目標関数を用いて,適応度を自動的に最適化する補聴器音声処理フレームワークを導入することで,最適な適合度を求めるための代替手法を提案する。
このフレームワークは完全に差別化可能であり、効率的なデータ駆動最適化にバックプロパゲーションアルゴリズムを使用することができる。
最初の目的の実験では、ノイズのない音声増幅に有望な結果が示され、自動最適化されたプロセッサは、よく認識された補聴器処方薬の1つを上回る。
関連論文リスト
- Lightly Weighted Automatic Audio Parameter Extraction for the Quality
Assessment of Consensus Auditory-Perceptual Evaluation of Voice [18.8222742272435]
提案手法は, ジッタ, 絶対ジッタ, シャマー, ハーモニック・ツー・ノイズ比 (HNR) , ゼロクロスという, 年齢, 性別, および5つの音響パラメータを利用する。
その結果,提案手法は最先端技術(SOTA)手法と類似し,一般的な音声事前学習モデルを用いて得られた潜在表現よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-11-27T07:19:22Z) - DASA: Difficulty-Aware Semantic Augmentation for Speaker Verification [55.306583814017046]
本稿では,話者認証のための難易度認識型セマンティック拡張(DASA)手法を提案する。
DASAは、話者埋め込み空間における多様なトレーニングサンプルを、無視できる余分な計算コストで生成する。
最も良い結果は、CN-Celeb評価セット上でのEER測定値の14.6%の相対的な減少を達成する。
論文 参考訳(メタデータ) (2023-10-18T17:07:05Z) - Deep Feature Learning for Medical Acoustics [78.56998585396421]
本研究の目的は,医療音響の課題における学習内容の比較である。
ヒトの呼吸音と心臓の鼓動を健康的または病態の影響の2つのカテゴリに分類する枠組みが実装されている。
論文 参考訳(メタデータ) (2022-08-05T10:39:37Z) - End-to-End Binaural Speech Synthesis [71.1869877389535]
本稿では,低ビットレート音声システムと強力なデコーダを組み合わせたエンドツーエンド音声合成システムを提案する。
実感的な聴覚シーンを作るために必要な環境効果を捉える上で, 対人的損失がもたらす効果を実証する。
論文 参考訳(メタデータ) (2022-07-08T05:18:36Z) - MBI-Net: A Non-Intrusive Multi-Branched Speech Intelligibility
Prediction Model for Hearing Aids [22.736703635666164]
本稿では,聴覚補聴器(HA)利用者の主観的了解度スコアを予測するためのマルチブランチ音声明瞭度予測モデル(MBI-Net)を提案する。
2つの枝の出力は、線形層を介して融合され、予測された音声の可知性スコアを得る。
論文 参考訳(メタデータ) (2022-04-07T09:13:44Z) - Towards Intelligibility-Oriented Audio-Visual Speech Enhancement [8.19144665585397]
本稿では,STOI(Modified short-time objective intelligibility)メトリックをトレーニングコスト関数として用いた完全畳み込み型AVSEモデルを提案する。
提案するI-O AV SEフレームワークは,従来の距離に基づく損失関数を訓練したオーディオ専用(AO)およびAVモデルより優れている。
論文 参考訳(メタデータ) (2021-11-18T11:47:37Z) - HASA-net: A non-intrusive hearing-aid speech assessment network [52.83357278948373]
本稿では,DNNに基づく聴覚支援音声評価ネットワーク(HASA-Net)を提案する。
我々の知る限り、HASA-Netは、DNNに基づく統合型非侵襲的補聴器モデルを用いて、品質とインテリジェンスの評価を取り入れた最初の研究である。
実験結果から,HASA-Netの予測音声品質と難聴度スコアは,2つのよく知られた難聴度評価指標と高い相関を示した。
論文 参考訳(メタデータ) (2021-11-10T14:10:13Z) - PL-EESR: Perceptual Loss Based END-TO-END Robust Speaker Representation
Extraction [90.55375210094995]
音声強調は、背景雑音の抑制による音声信号の知覚品質の向上を目的としている。
本稿では,頑健な話者表現抽出のためのエンドツーエンドディープラーニングフレームワークPL-EESRを提案する。
論文 参考訳(メタデータ) (2021-10-03T07:05:29Z) - Personalization of Hearing Aid Compression by Human-In-Loop Deep
Reinforcement Learning [3.402787708517184]
特定のユーザに対して必ずしも最適ではないユーザのグループからのゲイン平均に基づいて、補聴器の既存の規範的圧縮戦略を設計する。
本稿では, 補聴器の圧縮をパーソナライズし, 補聴器の精度向上を図るための, ループ内深部強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T02:50:33Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。