論文の概要: Flow-based Self-supervised Density Estimation for Anomalous Sound
Detection
- arxiv url: http://arxiv.org/abs/2103.08801v1
- Date: Tue, 16 Mar 2021 01:52:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 13:33:48.495590
- Title: Flow-based Self-supervised Density Estimation for Anomalous Sound
Detection
- Title(参考訳): 流れに基づく異常音検出のための自己教師付き密度推定
- Authors: Kota Dohi, Takashi Endo, Harsh Purohit, Ryo Tanabe, Yohei Kawaguchi
- Abstract要約: 私たちは、同じ機械タイプの他の機械からの音にターゲットマシンの音と低い可能性により高い可能性を割り当てるモデルを訓練します。
DCASE 2020 Challenge Task2データセットを用いて行った実験では、提案手法は平均4.6%改善した。
- 参考スコア(独自算出の注目度): 6.495759450230705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To develop a machine sound monitoring system, a method for detecting
anomalous sound is proposed. Exact likelihood estimation using Normalizing
Flows is a promising technique for unsupervised anomaly detection, but it can
fail at out-of-distribution detection since the likelihood is affected by the
smoothness of the data. To improve the detection performance, we train the
model to assign higher likelihood to target machine sounds and lower likelihood
to sounds from other machines of the same machine type. We demonstrate that
this enables the model to incorporate a self-supervised classification-based
approach. Experiments conducted using the DCASE 2020 Challenge Task2 dataset
showed that the proposed method improves the AUC by 4.6% on average when using
Masked Autoregressive Flow (MAF) and by 5.8% when using Glow, which is a
significant improvement over the previous method.
- Abstract(参考訳): 機械音監視システムを開発するために,異常音を検出する手法を提案する。
正規化フローを用いた高精度推定は教師なし異常検出に有望な手法であるが,データの平滑性に影響されるため,分散検出に失敗する可能性がある。
検出性能を向上させるために,対象機音に対して高い確率を割り当て,同一機の他の機音に対して低い確率を割り当てるようにモデルを訓練する。
これにより,モデルが自己教師付き分類に基づくアプローチを取り入れられることを実証する。
DCASE 2020 Challenge Task2データセットを用いて行った実験によると、提案手法はマズード自己回帰流(MAF)を用いて平均4.6%改善し、Glowを用いた場合の5.8%改善した。
関連論文リスト
- MIMII-Gen: Generative Modeling Approach for Simulated Evaluation of Anomalous Sound Detection System [5.578413517654703]
不十分な記録と異常の不足は、堅牢な異常検出システムを開発する上で重要な課題である。
本稿では,エンコーダ・デコーダ・フレームワークを統合した遅延拡散モデルを用いて,機械音の多様な異常を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-09-27T08:21:31Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
我々は,確率拡散モデル(DDPM)を自己エンコーダの復号化として活用する。
DDPMを用いてノイズレベルの範囲の入力を再構成し,結果の多次元再構成誤差を用いてアウト・オブ・ディストリビューション入力を分類する。
論文 参考訳(メタデータ) (2022-11-14T20:35:11Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly
Detection [8.136103644634348]
既存手法としては、ディープオートエンコーダ(DAE)、変分オートエンコーダ(VAE)、条件変分オートエンコーダ(CVAE)などがある。
階層型条件変分オートエンコーダ(HCVAE)と呼ばれる新しい手法を提案する。
この方法は、産業施設に関する利用可能な分類学的階層的知識を利用して、潜在空間の表現を洗練させる。
論文 参考訳(メタデータ) (2022-06-11T08:15:01Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。