Tight Bounds for Inverting Permutations via Compressed Oracle Arguments
- URL: http://arxiv.org/abs/2103.08975v2
- Date: Thu, 20 Jan 2022 02:39:37 GMT
- Title: Tight Bounds for Inverting Permutations via Compressed Oracle Arguments
- Authors: Ansis Rosmanis
- Abstract summary: Zhandry studied interactions between quantum query algorithms and the quantum oracle corresponding to random functions.
We introduce a similar interpretation for the case when the oracle corresponds to random permutations instead of random functions.
Because both random functions and random permutations are highly significant in security proofs, we hope that the present framework will find applications in quantum cryptography.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In his seminal work on recording quantum queries [Crypto 2019], Zhandry
studied interactions between quantum query algorithms and the quantum oracle
corresponding to random functions. Zhandry presented a framework for
interpreting various states in the quantum space of the oracle as databases of
the knowledge acquired by the algorithm and used that interpretation to provide
security proofs in post-quantum cryptography.
In this paper, we introduce a similar interpretation for the case when the
oracle corresponds to random permutations instead of random functions. Because
both random functions and random permutations are highly significant in
security proofs, we hope that the present framework will find applications in
quantum cryptography. Additionally, we show how this framework can be used to
prove that the success probability for a k-query quantum algorithm that
attempts to invert a random N-element permutation is at most O(k^2/N).
Related papers
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Founding Quantum Cryptography on Quantum Advantage, or, Towards Cryptography from $\mathsf{\#P}$-Hardness [10.438299411521099]
Recent separations have raised the tantalizing possibility of building quantum cryptography from sources of hardness that persist even if hierarchy collapses.
We show that quantum cryptography can be based on the extremely mild assumption that $mathsfP#P notsubseteq mathsf(io)BQP/qpoly$.
arXiv Detail & Related papers (2024-09-23T17:45:33Z) - A Quantum "Lifting Theorem" for Constructions of Pseudorandom Generators from Random Oracles [7.454028086083526]
We study the (quantum) security of pseudorandom generators (PRGs) constructed from random oracles.
We prove a "lifting theorem" showing, roughly, that if such a PRG is unconditionally secure against classical adversaries making unboundedly many queries to the random oracle, then it is also (unconditionally) secure against quantum adversaries in the same sense.
arXiv Detail & Related papers (2024-01-25T17:13:51Z) - Encryption with Quantum Public Keys [1.7725414095035827]
We study the question of building quantum public-key encryption schemes from one-way functions and even weaker assumptions.
We propose three schemes for quantum public-key encryption from one-way functions, pseudorandom function-like states with proof of deletion and pseudorandom function-like states, respectively.
arXiv Detail & Related papers (2023-03-09T16:17:19Z) - One-Way Ticket to Las Vegas and the Quantum Adversary [78.33558762484924]
We show that quantum Las Vegas query complexity is exactly equal to the quantum adversary bound.
This is achieved by transforming a feasible solution to the adversary inversion problem into a quantum query algorithm.
arXiv Detail & Related papers (2023-01-05T11:05:22Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
We propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases.
We show that the proposed filter design algorithm always converges to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods.
arXiv Detail & Related papers (2021-07-03T16:07:30Z) - Quantum Pseudorandomness and Classical Complexity [0.08158530638728499]
We show that cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist.
We discuss implications of these results for cryptography, complexity theory, and quantum tomography.
arXiv Detail & Related papers (2021-03-16T20:54:12Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.