Quantum Error Mitigation Relying on Permutation Filtering
- URL: http://arxiv.org/abs/2107.01458v2
- Date: Wed, 29 Sep 2021 09:34:42 GMT
- Title: Quantum Error Mitigation Relying on Permutation Filtering
- Authors: Yifeng Xiong, Soon Xin Ng, Lajos Hanzo
- Abstract summary: We propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases.
We show that the proposed filter design algorithm always converges to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods.
- Score: 84.66087478797475
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum error mitigation (QEM) is a class of promising techniques capable of
reducing the computational error of variational quantum algorithms tailored for
current noisy intermediate-scale quantum computers. The recently proposed
permutation-based methods are practically attractive, since they do not rely on
any a priori information concerning the quantum channels. In this treatise, we
propose a general framework termed as permutation filters, which includes the
existing permutation-based methods as special cases. In particular, we show
that the proposed filter design algorithm always converge to the global
optimum, and that the optimal filters can provide substantial improvements over
the existing permutation-based methods in the presence of narrowband quantum
noise, corresponding to large-depth, high-error-rate quantum circuits.
Related papers
- Qubit-efficient quantum combinatorial optimization solver [0.0]
We develop a qubit-efficient algorithm that overcomes the limitation by mapping a candidate bit solution to an entangled wave function of fewer qubits.
This approach could benefit near-term intermediate-scale and future fault-tolerant small-scale quantum devices.
arXiv Detail & Related papers (2024-07-22T11:02:13Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
This tutorial provides a mathematical description of the class of Variational Quantum Algorithms.
We introduce precisely the key aspects of these hybrid algorithms on the quantum side and the classical side.
We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions.
arXiv Detail & Related papers (2022-12-22T14:27:52Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum Gaussian filter for exploring ground-state properties [0.0]
Filter methods realize a projection from a superposed quantum state onto a target state, which can be efficient if two states have sufficient overlap.
We propose a quantum Gaussian filter (QGF) with the filter operator being a Gaussian function of the system Hamiltonian.
A hybrid quantum-classical algorithm feasible on near-term quantum computers is developed.
arXiv Detail & Related papers (2021-12-11T16:55:13Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.