Repurposing Pretrained Models for Robust Out-of-domain Few-Shot Learning
- URL: http://arxiv.org/abs/2103.09027v1
- Date: Tue, 16 Mar 2021 12:53:09 GMT
- Title: Repurposing Pretrained Models for Robust Out-of-domain Few-Shot Learning
- Authors: Namyeong Kwon, Hwidong Na, Gabriel Huang, Simon Lacoste-Julien
- Abstract summary: We consider the novel problem of repurposing pretrained MAML checkpoints to solve new few-shot classification tasks.
Because of the potential distribution mismatch, the original MAML steps may no longer be optimal.
We propose an alternative metatesting procedure and combine adversarial training and uncertainty-based stepsize adaptation.
- Score: 23.135033752967598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-agnostic meta-learning (MAML) is a popular method for few-shot learning
but assumes that we have access to the meta-training set. In practice, training
on the meta-training set may not always be an option due to data privacy
concerns, intellectual property issues, or merely lack of computing resources.
In this paper, we consider the novel problem of repurposing pretrained MAML
checkpoints to solve new few-shot classification tasks. Because of the
potential distribution mismatch, the original MAML steps may no longer be
optimal. Therefore we propose an alternative meta-testing procedure and combine
MAML gradient steps with adversarial training and uncertainty-based stepsize
adaptation. Our method outperforms "vanilla" MAML on same-domain and
cross-domains benchmarks using both SGD and Adam optimizers and shows improved
robustness to the choice of base stepsize.
Related papers
- Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Gradient-Based Meta-Learning Using Uncertainty to Weigh Loss for
Few-Shot Learning [5.691930884128995]
Model-Agnostic Meta-Learning (MAML) is one of the most successful meta-learning techniques for few-shot learning.
New method is proposed for task-specific learner adaptively learn to select parameters that minimize the loss of new tasks.
Method 1 generates weights by comparing meta-loss differences to improve the accuracy when there are few classes.
Method 2 introduces the homoscedastic uncertainty of each task to weigh multiple losses based on the original gradient descent.
arXiv Detail & Related papers (2022-08-17T08:11:51Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - Robust MAML: Prioritization task buffer with adaptive learning process
for model-agnostic meta-learning [15.894925018423665]
Model agnostic meta-learning (MAML) is a popular state-of-the-art meta-learning algorithm.
This paper proposes a more robust MAML based on an adaptive learning scheme and a prioritization task buffer.
Experimental results on meta reinforcement learning environments demonstrate a substantial performance gain.
arXiv Detail & Related papers (2021-03-15T09:34:34Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
Model-agnostic meta-learning (MAML) has emerged as one of the most successful meta-learning techniques in few-shot learning.
Despite the generalization power of the meta-model, it remains elusive that how adversarial robustness can be maintained by MAML in few-shot learning.
We propose a general but easily-optimized robustness-regularized meta-learning framework, which allows the use of unlabeled data augmentation, fast adversarial attack generation, and computationally-light fine-tuning.
arXiv Detail & Related papers (2021-02-20T22:03:04Z) - B-SMALL: A Bayesian Neural Network approach to Sparse Model-Agnostic
Meta-Learning [2.9189409618561966]
We propose a Bayesian neural network based MAML algorithm, which we refer to as the B-SMALL algorithm.
We demonstrate the performance of B-MAML using classification and regression tasks, and highlight that training a sparsifying BNN using MAML indeed improves the parameter footprint of the model.
arXiv Detail & Related papers (2021-01-01T09:19:48Z) - A Nested Bi-level Optimization Framework for Robust Few Shot Learning [10.147225934340877]
NestedMAML learns to assign weights to training tasks or instances.
Experiments on synthetic and real-world datasets demonstrate that NestedMAML efficiently mitigates the effects of "unwanted" tasks or instances.
arXiv Detail & Related papers (2020-11-13T06:41:22Z) - Meta-Learning with Adaptive Hyperparameters [55.182841228303225]
We focus on a complementary factor in MAML framework, inner-loop optimization (or fast adaptation)
We propose a new weight update rule that greatly enhances the fast adaptation process.
arXiv Detail & Related papers (2020-10-31T08:05:34Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
We develop a new theoretical framework to provide convergence guarantee for the general multi-step MAML algorithm.
In particular, our results suggest that an inner-stage step needs to be chosen inversely proportional to $N$ of inner-stage steps in order for $N$ MAML to have guaranteed convergence.
arXiv Detail & Related papers (2020-02-18T19:17:54Z) - On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement
Learning [25.163423936635787]
We consider Model-Agnostic Meta-Learning (MAML) methods for Reinforcement Learning (RL) problems.
We propose a variant of the MAML method, named Gradient Meta-Reinforcement Learning (SG-MRL)
We derive the iteration and sample complexity of SG-MRL to find an $ilon$-first-order stationary point, which, to the best of our knowledge, provides the first convergence guarantee for model-agnostic meta-reinforcement learning algorithms.
arXiv Detail & Related papers (2020-02-12T18:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.