論文の概要: Map completion from partial observation using the global structure of
multiple environmental maps
- arxiv url: http://arxiv.org/abs/2103.09071v1
- Date: Tue, 16 Mar 2021 13:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 13:23:10.724317
- Title: Map completion from partial observation using the global structure of
multiple environmental maps
- Title(参考訳): 複数環境地図の全体構造を用いた部分的観測による地図完成
- Authors: Yuki Katsumata, Akinori Kanechika, Akira Taniguchi, Lotfi El Hafi,
Yoshinobu Hagiwara, Tadahiro Taniguchi
- Abstract要約: 本稿では,深層ニューラルネットワークを応用した確率的生成モデルに基づく新しいSLAM法であるマップ補完ネットワークを用いたSLAM(MCN-SLAM)を提案する。
提案手法は,従来のSLAM法よりも,部分観測の状況下で1.3倍の精度で環境マップを推定できることを実験で示した。
- 参考スコア(独自算出の注目度): 4.627706451989238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using the spatial structure of various indoor environments as prior
knowledge, the robot would construct the map more efficiently. Autonomous
mobile robots generally apply simultaneous localization and mapping (SLAM)
methods to understand the reachable area in newly visited environments.
However, conventional mapping approaches are limited by only considering sensor
observation and control signals to estimate the current environment map. This
paper proposes a novel SLAM method, map completion network-based SLAM
(MCN-SLAM), based on a probabilistic generative model incorporating deep neural
networks for map completion. These map completion networks are primarily
trained in the framework of generative adversarial networks (GANs) to extract
the global structure of large amounts of existing map data. We show in
experiments that the proposed method can estimate the environment map 1.3 times
better than the previous SLAM methods in the situation of partial observation.
- Abstract(参考訳): 様々な屋内環境の空間構造を事前知識として利用することで、ロボットはより効率的に地図を構築することができる。
自律移動ロボットは通常、新しく訪れた環境における到達可能な領域を理解するためにSLAM法を併用する。
しかし,従来のマッピング手法はセンサ観測と制御信号のみを考慮し,現在の環境マップを推定することで制限される。
本稿では,深層ニューラルネットワークを応用した確率的生成モデルに基づく新しいSLAM法であるマップ補完ネットワークを用いたSLAM(MCN-SLAM)を提案する。
これらのマップ補完ネットワークは主に、既存の地図データの大域的構造を抽出するGAN(Generative Adversarial Network)の枠組みで訓練されている。
本研究では,提案手法が従来のSLAM法よりも1.3倍の環境マップを推定できることを示す。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field [12.247977717070773]
本稿では,エゴセントリックなマルチロボット探査における3次元点雲マップの融合について述べる。
提案手法は、最先端の場所認識と学習記述子を利用して、地図間の重複を効率的に検出する。
提案手法の有効性は,ロボット探査の複数のフィールドミッションを通じて実証された。
論文 参考訳(メタデータ) (2024-04-27T20:54:15Z) - SymboSLAM: Semantic Map Generation in a Multi-Agent System [0.0]
サブシンボリックな人工知能手法は、環境タイプの分類と同時局所化とマッピングの分野を支配している。
本稿では,共生的局所化とマッピングによる環境型分類への新たなアプローチ,SymboSLAMを提案し,その説明可能性のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-22T00:48:52Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
高精細(HD)セマンティックマップは、自動運転車が都市環境をナビゲートするために不可欠である。
オフラインのHDマップを作成する従来の方法には、労働集約的な手動アノテーションプロセスが含まれる。
近年,オンラインセンサを用いた局所地図作成手法が提案されている。
本研究では,グローバルマップのニューラル表現であるニューラルマッププライオリティ(NMP)を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:58:40Z) - Region Prediction for Efficient Robot Localization on Large Maps [5.75614168271028]
そこで本研究では,位置認識のためのマップノードのサブセットを事前選択する手法を提案する。
領域ラベルはディープニューラルネットワークの予測対象となり、ナビゲーション中は、高い確率で予測される領域に関連するノードのみをマッチングとして考慮する。
論文 参考訳(メタデータ) (2023-03-01T07:42:48Z) - BEVBert: Multimodal Map Pre-training for Language-guided Navigation [75.23388288113817]
視覚・言語ナビゲーション(VLN)における空間認識型マップベース事前学習パラダイムを提案する。
我々は,グローバルなトポロジカルマップにおけるナビゲーション依存性をモデル化しながら,不完全な観測を明示的に集約し,重複を取り除くための局所距離マップを構築した。
ハイブリッドマップをベースとして,マルチモーダルマップ表現を学習するための事前学習フレームワークを考案し,空間認識型クロスモーダル推論を強化し,言語誘導ナビゲーションの目標を導出する。
論文 参考訳(メタデータ) (2022-12-08T16:27:54Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: ローカライゼーションタスクのための畳み込み、エンドツーエンドのトレーニングニューラルネットワーク(NN)。
我々は,LocUNetがユーザを最先端の精度でローカライズし,無線マップ推定における不正確性が高いことを示す。
論文 参考訳(メタデータ) (2021-06-23T17:27:04Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
以前にマップされた位置を認識する能力は、自律システムにとって不可欠な機能である。
非構造的な惑星のような環境は、地形の類似性のためにこれらのシステムに大きな課題をもたらす。
本稿では,空間情報のみを用いたループ閉鎖問題の解法を提案する。
論文 参考訳(メタデータ) (2020-09-01T04:41:40Z) - Real-time Localization Using Radio Maps [59.17191114000146]
パスロスに基づく簡易かつ効果的なローカライゼーション法を提案する。
提案手法では, 受信した信号強度を, 既知の位置を持つ基地局の集合から報告する。
論文 参考訳(メタデータ) (2020-06-09T16:51:17Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
超広視野魚眼カメラ(FOV)を用いた広視野多視点ステレオ構成のための全方向位置決めと高密度マッピングシステムを提案する。
より実用的で正確な再構築のために、全方向深度推定のための改良された軽量のディープニューラルネットワークを導入する。
我々は全方位深度推定をビジュアル・オドメトリー(VO)に統合し,大域的整合性のためのループ閉鎖モジュールを付加する。
論文 参考訳(メタデータ) (2020-03-18T05:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。