Measurement-Induced Entanglement Transitions in the Quantum Ising Chain:
From Infinite to Zero Clicks
- URL: http://arxiv.org/abs/2103.09138v1
- Date: Tue, 16 Mar 2021 15:30:57 GMT
- Title: Measurement-Induced Entanglement Transitions in the Quantum Ising Chain:
From Infinite to Zero Clicks
- Authors: Xhek Turkeshi, Alberto Biella, Rosario Fazio, Marcello Dalmonte, Marco
Schiro
- Abstract summary: We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment.
We find a remarkably similar phenomenology as the measurement strength $gamma$ is increased.
We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate measurement-induced phase transitions in the Quantum Ising
chain coupled to a monitoring environment. We compare two different limits of
the measurement problem, the stochastic quantum-state diffusion protocol
corresponding to infinite small jumps per unit of time and the no-click limit,
corresponding to post-selection and described by a non-Hermitian Hamiltonian.
In both cases we find a remarkably similar phenomenology as the measurement
strength $\gamma$ is increased, namely a sharp transition from a critical phase
with logarithmic scaling of the entanglement to an area-law phase, which occurs
at the same value of the measurement rate in the two protocols. An effective
central charge, extracted from the logarithmic scaling of the entanglement,
vanishes continuously at the common transition point, although with different
critical behavior possibly suggesting different universality classes for the
two protocols. We interpret the central charge mismatch near the transition in
terms of noise-induced disentanglement, as suggested by the entanglement
statistics which displays emergent bimodality upon approaching the critical
point. The non-Hermitian Hamiltonian and its associated subradiance spectral
transition provide a natural framework to understand both the extended critical
phase, emerging here for a model which lacks any continuous symmetry, and the
entanglement transition into the area law.
Related papers
- Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model [0.7499722271664147]
We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model.
We find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation.
Our study enlarges the scope of critical phenomena that may occur in finite-component quantum systems.
arXiv Detail & Related papers (2023-11-19T15:13:57Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Entanglement Transitions from Stochastic Resetting of Non-Hermitian
Quasiparticles [0.0]
We write down a renewal equation for the statistics of the entanglement entropy and show that depending on the spectrum of quasiparticle decay rates different entanglement scaling can arise and even sharp entanglement phase transitions.
When applied to a Quantum Ising chain where the transverse magnetization is measured by quantum jumps, our theory predicts a critical phase with logarithmic scaling of the entanglement, an area law phase and a continuous phase transition between them, with an effective central charge vanishing as a square root at the transition point.
arXiv Detail & Related papers (2021-11-05T13:38:04Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Measurement-induced dark state phase transitions in long-ranged fermion
systems [3.093890460224435]
We identify an unconventional scaling phase in the quantum dynamics of free fermions with long range hopping.
A perturbative renormalization group analysis suggests that the transitions to the long-range phase are also unconventional, corresponding to a modified sine-Gordon theory.
This confirms the view of a measurement-induced phase transition as a quantum phase transition in the dark state of an effective, non-Hermitian Hamiltonian.
arXiv Detail & Related papers (2021-05-17T18:00:03Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.