Topological transitions with continuously monitored free fermions
- URL: http://arxiv.org/abs/2112.09787v3
- Date: Tue, 23 Aug 2022 22:00:18 GMT
- Title: Topological transitions with continuously monitored free fermions
- Authors: Graham Kells, Dganit Meidan and Alessandro Romito
- Abstract summary: We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a free fermion model where two sets of non-commuting non-projective
measurements stabilize area-law entanglement scaling phases of distinct
topological order. We show the presence of a topological phase transition that
is of a different universality class than that observed in stroboscopic
projective circuits. In the presence of unitary dynamics, the two topologically
distinct phases are separated by a region with sub-volume scaling of the
entanglement entropy. We find that this entanglement transition is well
identified by a combination of the bipartite entanglement entropy and the
topological entanglement entropy. We further show that the phase diagram is
qualitatively captured by an analytically tractable non-Hermitian model
obtained via post-selecting the measurement outcome. Finally we introduce a
partial-post-selection continuous mapping, that uniquely associates topological
indices of the non-Hermitian Hamiltonian to the distinct phases of the
stochastic measurement-induced dynamics.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Predicting Topological Quantum Phase Transition via Multipartite
Entanglement from Dynamics [0.0]
An exactly solvable Kitaev model in a two-dimensional square lattice exhibits a topological quantum phase transition.
We show that features of the dynamical state, such as Loschmidt echo, time-averaged multipartite entanglement, can determine whether the initial state belongs to the topological phase or not.
arXiv Detail & Related papers (2022-12-26T18:42:05Z) - Observation of a symmetry-protected topological phase in external
magnetic fields [1.4515101661933258]
We report the real-space observation of a symmetry-protected topological phase with interacting nuclear spins.
We probe the interaction-induced transition between two topologically distinct phases, both of which are classified by many-body Chern numbers.
Our findings enable direct characterization of topological features of quantum many-body states through gradually decreasing the strength of the introduced external fields.
arXiv Detail & Related papers (2022-08-10T14:08:01Z) - Measurement-Induced Entanglement Phase Transition in Random Bilocal
Circuits [0.0]
We study the dynamics of averaged purity for a simple $N$-qudit Brownian circuit model with all-to-all random interaction and measurements.
We show that there are two phases distinguished by the behavior of the total system entropy in the long time.
arXiv Detail & Related papers (2022-01-30T02:07:46Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological delocalization transitions and mobility edges in the
nonreciprocal Maryland model [0.0]
Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices.
We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos.
Explicit expressions of the complex energy dispersions, phase boundaries and mobility edges are found.
arXiv Detail & Related papers (2021-08-16T15:35:52Z) - Symmetry-protected topological phase transitions and robust chiral order
on a tunable zigzag lattice [8.870994254107801]
We show that the setup in a zigzag optical lattice provides a perfect platform to realize symmetry-protected topological phase transitions.
By using infinite time-evolving block decimation, we obtain the phase diagram in a large parameter regions.
We find another scheme to realize the long-sought vector chiral phase, which is robust from quantum fluctuations.
arXiv Detail & Related papers (2020-11-12T18:20:24Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.