論文の概要: Lyapunov Barrier Policy Optimization
- arxiv url: http://arxiv.org/abs/2103.09230v1
- Date: Tue, 16 Mar 2021 17:58:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-17 14:21:50.863310
- Title: Lyapunov Barrier Policy Optimization
- Title(参考訳): リャプノフ障壁政策最適化
- Authors: Harshit Sikchi, Wenxuan Zhou, David Held
- Abstract要約: 本稿では,lyapunovベースのバリア関数を用いて,トレーニングイテレーション毎にポリシ更新をセーフセットに制限する手法であるlbpoを提案する。
また,本手法により,環境の制約に対して,エージェントの保守性を制御できる。
- 参考スコア(独自算出の注目度): 15.364174084072872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying Reinforcement Learning (RL) agents in the real-world require that
the agents satisfy safety constraints. Current RL agents explore the
environment without considering these constraints, which can lead to damage to
the hardware or even other agents in the environment. We propose a new method,
LBPO, that uses a Lyapunov-based barrier function to restrict the policy update
to a safe set for each training iteration. Our method also allows the user to
control the conservativeness of the agent with respect to the constraints in
the environment. LBPO significantly outperforms state-of-the-art baselines in
terms of the number of constraint violations during training while being
competitive in terms of performance. Further, our analysis reveals that
baselines like CPO and SDDPG rely mostly on backtracking to ensure safety
rather than safe projection, which provides insight into why previous methods
might not have effectively limit the number of constraint violations.
- Abstract(参考訳): 現実世界にRLエージェントを配置するには、エージェントが安全上の制約を満たす必要がある。
現在のRLエージェントは、これらの制約を考慮せずに環境を探索し、環境内のハードウェアや他のエージェントにダメージを与える可能性がある。
本稿では,lyapunovベースのバリア関数を用いて,トレーニングイテレーション毎にポリシ更新をセーフセットに制限する手法であるlbpoを提案する。
また,本手法により,環境の制約に対して,エージェントの保守性を制御できる。
LBPOは、パフォーマンスの点で競争力がありながら、トレーニング中の制約違反の数で最先端のベースラインを著しく上回る。
さらに,本分析の結果から,CPOやSDDPGなどのベースラインは,安全投射ではなくバックトラックに大きく依存していることが明らかとなった。
関連論文リスト
- Embedding Safety into RL: A New Take on Trust Region Methods [1.5733417396701983]
強化学習(RL)エージェントは、様々なタスクを解くことができるが、安全でない振る舞いをする傾向がある。
本稿では,安全制約に基づいて政策空間の幾何学を変更する新しいアプローチとして,制約付きトラスト地域政策最適化(C-TRPO)を提案する。
論文 参考訳(メタデータ) (2024-11-05T09:55:50Z) - Exterior Penalty Policy Optimization with Penalty Metric Network under Constraints [52.37099916582462]
制約強化学習(CRL:Constrained Reinforcement Learning)では、エージェントが制約を満たしながら最適なポリシーを学習するために環境を探索する。
我々は,刑罰科目ネットワーク(PMN)が生み出す適応的な罰則を持つ,理論的に保証された刑罰関数法(Exterior Penalty Policy Optimization (EPO))を提案する。
PMNは様々な制約違反に適切に対応し、効率的な制約満足度と安全な探索を可能にする。
論文 参考訳(メタデータ) (2024-07-22T10:57:32Z) - Do No Harm: A Counterfactual Approach to Safe Reinforcement Learning [5.862025534776996]
制御のための強化学習は、環境の不確実性や複雑な表現を考慮に入れた豊かなフィードバックポリシーを学ぶ能力によって、ますます人気が高まっている。
このような方法では、もしエージェントが入居しているか、あるいは訪れなければならない場合、制約違反が避けられない状態であるなら、どの程度罰せられるべきかは明らかでない。
我々は,この課題に対して,既定の安全政策と比較して,学習した政策の事実的害に対する制約を定式化することによって対処する。
哲学的な意味では、この定式化は学習者にそれが引き起こした制約違反を罰するだけであり、実際的な意味では最適な制御問題の実現可能性を維持する。
論文 参考訳(メタデータ) (2024-05-19T20:33:21Z) - Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning [4.14360329494344]
強化学習(Reinforcement Learning, RL)は、過去数十年にわたって、幅広い領域で意思決定に革命をもたらした。
しかし、現実のシナリオにRLポリシーをデプロイすることは、安全性を確保する上で重要な課題である。
従来の安全RLアプローチは、事前に定義された安全制約を政策学習プロセスに組み込むことに重点を置いてきた。
本稿では,安全なRL制御ポリシを同時に学習し,その環境の未知の安全制約パラメータを同定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T20:01:15Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
本稿では、等価な制約のない問題の単一最小化により、煩雑な制約付きポリシー反復を解決するP3Oを提案する。
P3Oは、コスト制約を排除し、クリップされたサロゲート目的による信頼領域制約を除去するために、単純なyet効果のペナルティ関数を利用する。
P3Oは,一連の制約された機関車作業において,報酬改善と制約満足度の両方に関して,最先端のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-24T06:15:51Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement Learning (RL)は、様々なシーケンシャルな意思決定タスクに対して最適なポリシーを学ぶ上で、有望なパフォーマンスを示している。
多くの現実世界のRL問題において、主な目的を最適化する以外に、エージェントは一定のレベルの安全性を満たすことが期待されている。
これらの制約に対処するために,リャプノフに基づく不確実性を考慮した安全なRLモデルを提案する。
論文 参考訳(メタデータ) (2021-07-29T13:08:15Z) - Safe Reinforcement Learning Using Advantage-Based Intervention [45.79740561754542]
多くのシーケンシャルな決定問題は、安全性の制約に従いながら全報酬を最大化するポリシーを見つけることである。
本稿では,エージェントの安全性を確保するために,アドバンテージ関数に基づく介入機構を用いた新しいアルゴリズムであるSAILRを提案する。
私たちの方法には、トレーニングとデプロイメントの両方において、安全性が強く保証されています。
論文 参考訳(メタデータ) (2021-06-16T20:28:56Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。