The Rise and Fall of Fake News sites: A Traffic Analysis
- URL: http://arxiv.org/abs/2103.09258v1
- Date: Tue, 16 Mar 2021 18:10:22 GMT
- Title: The Rise and Fall of Fake News sites: A Traffic Analysis
- Authors: Manolis Chalkiadakis, Alexandros Kornilakis, Panagiotis Papadopoulos,
Evangelos P. Markatos, Nicolas Kourtellis
- Abstract summary: We investigate the online presence of fake news websites and characterize their behavior in comparison to real news websites.
Based on our findings, we build a content-agnostic ML for automatic detection of fake news websites.
- Score: 62.51737815926007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past decade, we have witnessed the rise of misinformation on the
Internet, with online users constantly falling victims of fake news. A
multitude of past studies have analyzed fake news diffusion mechanics and
detection and mitigation techniques. However, there are still open questions
about their operational behavior such as: How old are fake news websites? Do
they typically stay online for long periods of time? Do such websites
synchronize with each other their up and down time? Do they share similar
content through time? Which third-parties support their operations? How much
user traffic do they attract, in comparison to mainstream or real news
websites? In this paper, we perform a first of its kind investigation to answer
such questions regarding the online presence of fake news websites and
characterize their behavior in comparison to real news websites. Based on our
findings, we build a content-agnostic ML classifier for automatic detection of
fake news websites (i.e. accuracy) that are not yet included in manually
curated blacklists.
Related papers
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Fake News Detection and Behavioral Analysis: Case of COVID-19 [0.22940141855172028]
"Infodemic" due to spread of fake news regarding the pandemic has been a global issue.
Readers could mistake fake news for real news, and consequently have less access to authentic information.
It is challenging to accurately identify fake news data in social media posts.
arXiv Detail & Related papers (2023-05-25T13:42:08Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - FALSE: Fake News Automatic and Lightweight Solution [0.20999222360659603]
In this paper, R code have been used to study and visualize a modern fake news dataset.
We use clustering, classification, correlation and various plots to analyze and present the data.
arXiv Detail & Related papers (2022-08-16T11:53:30Z) - Fake News Detection Tools and Methods -- A Review [0.0]
We discuss the recent literature about different approaches to detect fake news over the Internet.
We highlight the various publicly available datasets and various online tools that are available and can debunk Fake News in real-time.
arXiv Detail & Related papers (2021-11-21T13:19:23Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
We present an eye-tracking study, in which we let 44 lay participants to casually read through a social media feed containing posts with news articles, some of which were fake.
In a second run, we asked the participants to decide on the truthfulness of these articles.
We also describe a follow-up qualitative study with a similar scenario but this time with 7 expert fake news annotators.
arXiv Detail & Related papers (2021-09-26T08:11:17Z) - Is it Fake? News Disinformation Detection on South African News Websites [0.015863809575305417]
Natural Language Processing is widely used in detecting fake news.
It is especially a problem in more localised contexts such as in South Africa.
In this work we investigate fake news detection on South African websites.
arXiv Detail & Related papers (2021-08-06T04:54:03Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - How does Truth Evolve into Fake News? An Empirical Study of Fake News
Evolution [55.27685924751459]
We present the Fake News Evolution dataset: a new dataset tracking the fake news evolution process.
Our dataset is composed of 950 paired data, each of which consists of articles representing the truth, the fake news, and the evolved fake news.
We observe the features during the evolution and they are the disinformation techniques, text similarity, top 10 keywords, classification accuracy, parts of speech, and sentiment properties.
arXiv Detail & Related papers (2021-03-10T09:01:34Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.